Inositol 1,4,5-Trisphosphate Receptors
"Inositol 1,4,5-Trisphosphate Receptors" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
Intracellular receptors that bind to INOSITOL 1,4,5-TRISPHOSPHATE and play an important role in its intracellular signaling. Inositol 1,4,5-trisphosphate receptors are calcium channels that release CALCIUM in response to increased levels of inositol 1,4,5-trisphosphate in the CYTOPLASM.
Descriptor ID |
D053496
|
MeSH Number(s) |
D12.776.157.530.400.150.760 D12.776.543.550.425.150.760 D12.776.543.585.400.150.760 D12.776.826.179
|
Concept/Terms |
Inositol 1,4,5-Trisphosphate Receptors- Inositol 1,4,5-Trisphosphate Receptors
- INSP3 Receptor
- Receptor, INSP3
- IP3 Receptor
- Receptor, IP3
- Inositol 1,4,5-Triphosphate Receptors
- Receptor, Inositol-1,4,5-triphosphate
- Inositol-1,4,5-Triphosphate Receptor
- 1,4,5-INTP Receptor
- Inositol Triphosphate Receptor
- Receptor, Inositol Triphosphate
- Triphosphate Receptor, Inositol
|
Below are MeSH descriptors whose meaning is more general than "Inositol 1,4,5-Trisphosphate Receptors".
- Chemicals and Drugs [D]
- Amino Acids, Peptides, and Proteins [D12]
- Proteins [D12.776]
- Carrier Proteins [D12.776.157]
- Membrane Transport Proteins [D12.776.157.530]
- Ion Channels [D12.776.157.530.400]
- Calcium Channels [D12.776.157.530.400.150]
- Inositol 1,4,5-Trisphosphate Receptors [D12.776.157.530.400.150.760]
- Membrane Proteins [D12.776.543]
- Membrane Glycoproteins [D12.776.543.550]
- Ion Channels [D12.776.543.550.425]
- Calcium Channels [D12.776.543.550.425.150]
- Inositol 1,4,5-Trisphosphate Receptors [D12.776.543.550.425.150.760]
- Membrane Transport Proteins [D12.776.543.585]
- Ion Channels [D12.776.543.585.400]
- Calcium Channels [D12.776.543.585.400.150]
- Inositol 1,4,5-Trisphosphate Receptors [D12.776.543.585.400.150.760]
- Receptors, Cytoplasmic and Nuclear [D12.776.826]
- Inositol 1,4,5-Trisphosphate Receptors [D12.776.826.179]
Below are MeSH descriptors whose meaning is more specific than "Inositol 1,4,5-Trisphosphate Receptors".
This graph shows the total number of publications written about "Inositol 1,4,5-Trisphosphate Receptors" by people in this website by year, and whether "Inositol 1,4,5-Trisphosphate Receptors" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
1990 | 0 | 1 | 1 | 1993 | 0 | 1 | 1 | 1997 | 0 | 1 | 1 | 1998 | 0 | 2 | 2 | 1999 | 0 | 1 | 1 | 2000 | 0 | 1 | 1 | 2002 | 0 | 1 | 1 | 2003 | 0 | 2 | 2 | 2004 | 0 | 1 | 1 | 2005 | 0 | 5 | 5 | 2006 | 0 | 1 | 1 | 2007 | 3 | 1 | 4 | 2008 | 0 | 1 | 1 | 2010 | 1 | 1 | 2 | 2012 | 0 | 1 | 1 | 2014 | 0 | 1 | 1 | 2015 | 0 | 1 | 1 | 2021 | 0 | 1 | 1 | 2022 | 1 | 0 | 1 | 2023 | 0 | 1 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Inositol 1,4,5-Trisphosphate Receptors" by people in Profiles.
-
Tambeaux A, Aguilar-S?nchez Y, Santiago DJ, Mascitti M, DiNovo KM, Mej?a-Alvarez R, Fill M, Wayne Chen SR, Ramos-Franco J. Ligand sensitivity of type-1 inositol 1,4,5-trisphosphate receptor is enhanced by the D2594K mutation. Pflugers Arch. 2023 05; 475(5):569-581.
-
Sun B, Ni M, Tian S, Guo W, Cai S, Sondergaard MT, Chen Y, Mu Y, Estillore JP, Wang R, Chen J, Overgaard MT, Fill M, Ramos-Franco J, Nyegaard M, Wayne Chen SR. A gain-of-function mutation in the ITPR1 gating domain causes male infertility in mice. J Cell Physiol. 2022 08; 237(8):3305-3316.
-
Varma D, Almeida JFQ, DeSantiago J, Blatter LA, Banach K. Inositol 1,4,5-trisphosphate receptor - reactive oxygen signaling domain regulates excitation-contraction coupling in atrial myocytes. J Mol Cell Cardiol. 2022 02; 163:147-155.
-
Seidlmayer LK, Kuhn J, Berbner A, Arias-Loza PA, Williams T, Kaspar M, Czolbe M, Kwong JQ, Molkentin JD, Heinze KG, Dedkova EN, Ritter O. Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulum-mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca2+ uptake through the mitochondrial ryanodine receptor in cardiac myocytes. Cardiovasc Res. 2016 10; 112(1):491-501.
-
Hohendanner F, Maxwell JT, Blatter LA. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels (Austin). 2015; 9(3):129-38.
-
Kapoor N, Maxwell JT, Mignery GA, Will D, Blatter LA, Banach K. Spatially defined InsP3-mediated signaling in embryonic stem cell-derived cardiomyocytes. PLoS One. 2014; 9(1):e83715.
-
Escobar AL, Perez CG, Reyes ME, Lucero SG, Kornyeyev D, Mej?a-Alvarez R, Ramos-Franco J. Role of inositol 1,4,5-trisphosphate in the regulation of ventricular Ca(2+) signaling in intact mouse heart. J Mol Cell Cardiol. 2012 Dec; 53(6):768-79.
-
Rinne A, Blatter LA. Activation of NFATc1 is directly mediated by IP3 in adult cardiac myocytes. Am J Physiol Heart Circ Physiol. 2010 Nov; 299(5):H1701-7.
-
Nakayama H, Bodi I, Maillet M, DeSantiago J, Domeier TL, Mikoshiba K, Lorenz JN, Blatter LA, Bers DM, Molkentin JD. The IP3 receptor regulates cardiac hypertrophy in response to select stimuli. Circ Res. 2010 Sep 03; 107(5):659-66.
-
Kocksk?mper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol. 2008 Aug; 45(2):128-47.
|
People  People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|