Header Logo

Connection

Lothar Blatter to Myocytes, Cardiac

This is a "connection" page, showing publications Lothar Blatter has written about Myocytes, Cardiac.
Connection Strength

18.035
  1. Excitation-contraction coupling and calcium release in atrial muscle. Pflugers Arch. 2021 03; 473(3):317-329.
    View in: PubMed
    Score: 0.630
  2. Mitochondrial calcium uniporter complex activation protects against calcium alternans in atrial myocytes. Am J Physiol Heart Circ Physiol. 2020 10 01; 319(4):H873-H881.
    View in: PubMed
    Score: 0.614
  3. Effect of carvedilol on atrial excitation-contraction coupling, Ca2+ release, and arrhythmogenicity. Am J Physiol Heart Circ Physiol. 2020 05 01; 318(5):H1245-H1255.
    View in: PubMed
    Score: 0.598
  4. The intricacies of atrial calcium cycling during excitation-contraction coupling. J Gen Physiol. 2017 09 04; 149(9):857-865.
    View in: PubMed
    Score: 0.497
  5. Alternans in atria: Mechanisms and clinical relevance. Medicina (Kaunas). 2017; 53(3):139-149.
    View in: PubMed
    Score: 0.491
  6. Membrane potential determines calcium alternans through modulation of SR Ca2+ load and L-type Ca2+ current. J Mol Cell Cardiol. 2017 04; 105:49-58.
    View in: PubMed
    Score: 0.482
  7. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes. J Physiol. 2017 06 15; 595(12):3835-3845.
    View in: PubMed
    Score: 0.480
  8. Dyssynchronous calcium removal in heart failure-induced atrial remodeling. Am J Physiol Heart Circ Physiol. 2016 12 01; 311(6):H1352-H1359.
    View in: PubMed
    Score: 0.469
  9. Ca(2+)-activated chloride channel activity during Ca(2+) alternans in ventricular myocytes. Channels (Austin). 2016 Nov; 10(6):507-17.
    View in: PubMed
    Score: 0.460
  10. Calcium-activated chloride current determines action potential morphology during calcium alternans in atrial myocytes. J Physiol. 2016 Feb 01; 594(3):699-714.
    View in: PubMed
    Score: 0.446
  11. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels (Austin). 2015; 9(3):129-38.
    View in: PubMed
    Score: 0.415
  12. Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol. 2015 Mar 15; 593(6):1459-77.
    View in: PubMed
    Score: 0.414
  13. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans. Circ Res. 2015 Feb 27; 116(5):846-56.
    View in: PubMed
    Score: 0.414
  14. Cardiac alternans and intracellular calcium cycling. Clin Exp Pharmacol Physiol. 2014 Jul; 41(7):524-32.
    View in: PubMed
    Score: 0.401
  15. NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol. 2014 Mar; 306(6):H856-66.
    View in: PubMed
    Score: 0.388
  16. Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging. PLoS One. 2013; 8(4):e61525.
    View in: PubMed
    Score: 0.369
  17. ?-adrenergic stimulation increases the intra-SR Ca termination threshold for spontaneous Ca waves in cardiac myocytes. Channels (Austin). 2013 May-Jun; 7(3):206-10.
    View in: PubMed
    Score: 0.367
  18. Effects of mitochondrial uncoupling on Ca(2+) signaling during excitation-contraction coupling in atrial myocytes. Am J Physiol Heart Circ Physiol. 2013 Apr 01; 304(7):H983-93.
    View in: PubMed
    Score: 0.364
  19. ?-Adrenergic stimulation increases the intra-sarcoplasmic reticulum Ca2+ threshold for Ca2+ wave generation. J Physiol. 2012 Dec 01; 590(23):6093-108.
    View in: PubMed
    Score: 0.354
  20. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes. J Physiol. 2012 Dec 01; 590(23):6037-45.
    View in: PubMed
    Score: 0.354
  21. Regulation of cardiac alternans by ?-adrenergic signaling pathways. Am J Physiol Heart Circ Physiol. 2012 Oct 15; 303(8):H1047-56.
    View in: PubMed
    Score: 0.352
  22. Refractoriness of sarcoplasmic reticulum Ca2+ release determines Ca2+ alternans in atrial myocytes. Am J Physiol Heart Circ Physiol. 2012 Jun 01; 302(11):H2310-20.
    View in: PubMed
    Score: 0.343
  23. A novel method for spatially complex diffraction-limited photoactivation and photobleaching in living cells. J Physiol. 2012 Mar 01; 590(5):1093-100.
    View in: PubMed
    Score: 0.336
  24. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol. 2012 Jan; 52(1):48-61.
    View in: PubMed
    Score: 0.331
  25. Ca?+ spark-dependent and -independent sarcoplasmic reticulum Ca?+ leak in normal and failing rabbit ventricular myocytes. J Physiol. 2010 Dec 01; 588(Pt 23):4743-57.
    View in: PubMed
    Score: 0.310
  26. Activation of NFATc1 is directly mediated by IP3 in adult cardiac myocytes. Am J Physiol Heart Circ Physiol. 2010 Nov; 299(5):H1701-7.
    View in: PubMed
    Score: 0.308
  27. Isoform- and tissue-specific regulation of the Ca(2+)-sensitive transcription factor NFAT in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol. 2010 Jun; 298(6):H2001-9.
    View in: PubMed
    Score: 0.298
  28. Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol. 2009 Feb 15; 587(Pt 4):851-72.
    View in: PubMed
    Score: 0.273
  29. Tricyclic antidepressant amitriptyline alters sarcoplasmic reticulum calcium handling in ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008 Nov; 295(5):H2008-16.
    View in: PubMed
    Score: 0.268
  30. Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res. 2008 Oct 10; 103(8):e105-15.
    View in: PubMed
    Score: 0.268
  31. IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008 Feb; 294(2):H596-604.
    View in: PubMed
    Score: 0.254
  32. IP3-dependent nuclear Ca2+ signalling in the mammalian heart. J Physiol. 2007 Oct 15; 584(Pt 2):601-11.
    View in: PubMed
    Score: 0.250
  33. Ca2+ entry-independent effects of L-type Ca2+ channel modulators on Ca2+ sparks in ventricular myocytes. Am J Physiol Cell Physiol. 2007 Jun; 292(6):C2129-40.
    View in: PubMed
    Score: 0.241
  34. Cytosolic energy reserves determine the effect of glycolytic sugar phosphates on sarcoplasmic reticulum Ca2+ release in cat ventricular myocytes. J Physiol. 2006 Nov 15; 577(Pt 1):281-93.
    View in: PubMed
    Score: 0.233
  35. Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol. 2006 Nov; 291(5):C840-50.
    View in: PubMed
    Score: 0.229
  36. Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes. J Physiol. 2006 May 01; 572(Pt 3):799-809.
    View in: PubMed
    Score: 0.228
  37. Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res. 2006 Jul 15; 71(2):310-21.
    View in: PubMed
    Score: 0.225
  38. Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes. J Physiol. 2005 May 01; 564(Pt 3):697-714.
    View in: PubMed
    Score: 0.209
  39. Palytoxin disrupts cardiac excitation-contraction coupling through interactions with P-type ion pumps. Am J Physiol Cell Physiol. 2004 Aug; 287(2):C527-38.
    View in: PubMed
    Score: 0.197
  40. Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes. Biomolecules. 2024 Jan 24; 14(2).
    View in: PubMed
    Score: 0.194
  41. Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes. J Physiol. 2004 Mar 16; 555(Pt 3):727-41.
    View in: PubMed
    Score: 0.194
  42. Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. J Physiol. 2003 Jan 01; 546(Pt 1):19-31.
    View in: PubMed
    Score: 0.181
  43. Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes. J Physiol. 2003 Jan 01; 546(Pt 1):119-35.
    View in: PubMed
    Score: 0.181
  44. The 'Reverse FDUF' Mechanism of Atrial Excitation-Contraction Coupling Sustains Calcium Alternans-A Hypothesis. Biomolecules. 2022 12 20; 13(1).
    View in: PubMed
    Score: 0.180
  45. Activation of small conductance Ca2+ -activated K+ channels suppresses Ca2+ transient and action potential alternans in ventricular myocytes. J Physiol. 2023 01; 601(1):51-67.
    View in: PubMed
    Score: 0.180
  46. Subcellular Ca2+ alternans represents a novel mechanism for the generation of arrhythmogenic Ca2+ waves in cat atrial myocytes. J Physiol. 2002 11 15; 545(1):65-79.
    View in: PubMed
    Score: 0.179
  47. L-type Ca2+ channel recovery from inactivation in rabbit atrial myocytes. Physiol Rep. 2022 03; 10(5):e15222.
    View in: PubMed
    Score: 0.170
  48. Triggered Ca2+ Waves Induce Depolarization of Maximum Diastolic Potential and Action Potential Prolongation in Dog Atrial Myocytes. Circ Arrhythm Electrophysiol. 2020 06; 13(6):e008179.
    View in: PubMed
    Score: 0.151
  49. The role of fibroblast - Cardiomyocyte interaction for atrial dysfunction in HFpEF and hypertensive heart disease. J Mol Cell Cardiol. 2019 06; 131:53-65.
    View in: PubMed
    Score: 0.140
  50. Action potential shortening rescues atrial calcium alternans. J Physiol. 2019 02; 597(3):723-740.
    View in: PubMed
    Score: 0.136
  51. The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Ca2+ leak in ventricular myocytes. J Mol Cell Cardiol. 2017 03; 104:9-16.
    View in: PubMed
    Score: 0.120
  52. Harnessing the Power of Integrated Mitochondrial Biology and Physiology: A Special Report on the NHLBI Mitochondria in Heart Diseases Initiative. Circ Res. 2015 Jul 17; 117(3):234-8.
    View in: PubMed
    Score: 0.108
  53. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol Heart Circ Physiol. 2014 Sep 01; 307(5):H689-700.
    View in: PubMed
    Score: 0.100
  54. Spatially defined InsP3-mediated signaling in embryonic stem cell-derived cardiomyocytes. PLoS One. 2014; 9(1):e83715.
    View in: PubMed
    Score: 0.097
  55. Using two dyes with the same fluorophore to monitor cellular calcium concentration in an extended range. PLoS One. 2013; 8(2):e55778.
    View in: PubMed
    Score: 0.091
  56. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. J Gen Physiol. 2012 May; 139(5):321-31.
    View in: PubMed
    Score: 0.086
  57. Properties of Ca2+ sparks revealed by four-dimensional confocal imaging of cardiac muscle. J Gen Physiol. 2012 Mar; 139(3):189-207.
    View in: PubMed
    Score: 0.085
  58. Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. Am J Physiol Heart Circ Physiol. 2012 Feb 15; 302(4):H953-63.
    View in: PubMed
    Score: 0.084
  59. Regulation of sarcoplasmic reticulum Ca?? leak by cytosolic Ca?? in rabbit ventricular myocytes. J Physiol. 2011 Dec 15; 589(Pt 24):6039-50.
    View in: PubMed
    Score: 0.083
  60. The IP3 receptor regulates cardiac hypertrophy in response to select stimuli. Circ Res. 2010 Sep 03; 107(5):659-66.
    View in: PubMed
    Score: 0.076
  61. Changes in intra-luminal calcium during spontaneous calcium waves following sensitization of ryanodine receptor channels. Channels (Austin). 2010 Mar-Apr; 4(2):87-92.
    View in: PubMed
    Score: 0.075
  62. Alteration of sarcoplasmic reticulum Ca2+ release termination by ryanodine receptor sensitization and in heart failure. J Physiol. 2009 Nov 01; 587(Pt 21):5197-209.
    View in: PubMed
    Score: 0.072
  63. Trifluoperazine: a rynodine receptor agonist. Pflugers Arch. 2009 Aug; 458(4):643-51.
    View in: PubMed
    Score: 0.069
  64. Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes. Am J Physiol Heart Circ Physiol. 2008 Aug; 295(2):H851-9.
    View in: PubMed
    Score: 0.066
  65. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol. 2008 Aug; 45(2):128-47.
    View in: PubMed
    Score: 0.066
  66. SparkMaster: automated calcium spark analysis with ImageJ. Am J Physiol Cell Physiol. 2007 Sep; 293(3):C1073-81.
    View in: PubMed
    Score: 0.061
  67. Signalling mechanisms in contraction-mediated stimulation of intracellular NO production in cat ventricular myocytes. J Physiol. 2007 Apr 01; 580(Pt 1):327-45.
    View in: PubMed
    Score: 0.060
  68. Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res. 2006 Sep 29; 99(7):740-8.
    View in: PubMed
    Score: 0.058
  69. Cell culture modifies Ca2+ signaling during excitation-contraction coupling in neonate cardiac myocytes. Cell Calcium. 2007 Jan; 41(1):13-25.
    View in: PubMed
    Score: 0.058
  70. Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J Biol Chem. 2006 Jan 06; 281(1):608-16.
    View in: PubMed
    Score: 0.055
  71. Phenylephrine acts via IP3-dependent intracellular NO release to stimulate L-type Ca2+ current in cat atrial myocytes. J Physiol. 2005 Aug 15; 567(Pt 1):143-57.
    View in: PubMed
    Score: 0.053
  72. Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res. 2005 Jun 24; 96(12):1274-81.
    View in: PubMed
    Score: 0.053
  73. Na/K pump-induced [Na](i) gradients in rat ventricular myocytes measured with two-photon microscopy. Biophys J. 2004 Aug; 87(2):1360-8.
    View in: PubMed
    Score: 0.050
  74. Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol. 2004 Mar 16; 555(Pt 3):607-15.
    View in: PubMed
    Score: 0.049
  75. Signaling mechanisms that mediate nitric oxide production induced by acetylcholine exposure and withdrawal in cat atrial myocytes. Circ Res. 2003 Dec 12; 93(12):1233-40.
    View in: PubMed
    Score: 0.048
  76. Acute exposure to thyroid hormone increases Na+ current and intracellular Ca2+ in cat atrial myocytes. J Physiol. 2003 Jan 15; 546(Pt 2):491-9.
    View in: PubMed
    Score: 0.045
  77. Nitric oxide signalling by selective beta(2)-adrenoceptor stimulation prevents ACh-induced inhibition of beta(2)-stimulated Ca(2+) current in cat atrial myocytes. J Physiol. 2002 Aug 01; 542(Pt 3):711-23.
    View in: PubMed
    Score: 0.044
  78. Inositol 1,4,5-trisphosphate receptor - reactive oxygen signaling domain regulates excitation-contraction coupling in atrial myocytes. J Mol Cell Cardiol. 2022 02; 163:147-155.
    View in: PubMed
    Score: 0.042
  79. Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release. Circ Res. 2011 Apr 01; 108(7):847-56.
    View in: PubMed
    Score: 0.020
  80. Confocal imaging of CICR events from isolated and immobilized SR vesicles. Cell Calcium. 2005 Nov; 38(5):497-505.
    View in: PubMed
    Score: 0.014
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.