Header Logo

Connection

Richard Fessler to Spinal Fusion

This is a "connection" page, showing publications Richard Fessler has written about Spinal Fusion.
Connection Strength

11.247
  1. Comparison of minimally invasive decompression alone versus minimally invasive short-segment fusion in the setting of adult degenerative lumbar scoliosis: a propensity score-matched analysis. J Neurosurg Spine. 2023 09 01; 39(3):394-403.
    View in: PubMed
    Score: 0.541
  2. Cervical Alignment Analysis Comparing Two-Level Cervical Disc Arthroplasty with Anterior Cervical Discectomy and Fusion with Anterior Plate Fixation. World Neurosurg. 2022 Sep; 165:e597-e610.
    View in: PubMed
    Score: 0.506
  3. Expandable versus Static Transforaminal Lumbar Interbody Fusion Cages: 1-year Radiographic Parameters and Patient-Reported Outcomes. World Neurosurg. 2022 Mar; 159:e1-e7.
    View in: PubMed
    Score: 0.485
  4. Nonunion Rates After Anterior Cervical Discectomy and Fusion: Comparison of Polyetheretherketone vs Structural Allograft Implants. Neurosurgery. 2021 06 15; 89(1):94-101.
    View in: PubMed
    Score: 0.471
  5. Intraoperative Neuromonitoring and Lumbar Spinal Instrumentation: Indications and Utility. Neurodiagn J. 2021 Mar; 61(1):2-10.
    View in: PubMed
    Score: 0.462
  6. Patient Expectations of Adult Spinal Deformity Correction Surgery. World Neurosurg. 2021 02; 146:e931-e939.
    View in: PubMed
    Score: 0.453
  7. Comparison of Anterior Cervical Discectomy and Fusion to Posterior Cervical Foraminotomy for Cervical Radiculopathy: Utilization, Costs, and Adverse Events 2003 to 2014. Neurosurgery. 2019 02 01; 84(2):413-420.
    View in: PubMed
    Score: 0.400
  8. A Staged Protocol for Circumferential Minimally Invasive Surgical Correction of Adult Spinal Deformity. Neurosurgery. 2017 Nov 01; 81(5):733-739.
    View in: PubMed
    Score: 0.367
  9. Letter to the Editor. Alternative C-1 screw placement technique. J Neurosurg Spine. 2018 01; 28(1):127-128.
    View in: PubMed
    Score: 0.366
  10. Lumbar Radiculopathy in the Setting of Degenerative Scoliosis: MIS Decompression and Limited Correction are Better Options. Neurosurg Clin N Am. 2017 Jul; 28(3):335-339.
    View in: PubMed
    Score: 0.352
  11. "Push-Through" Rod Passage Technique for the Improvement of Lumbar Lordosis and Sagittal Balance in Minimally Invasive Adult Degenerative Scoliosis Surgery. Clin Spine Surg. 2016 10; 29(8):323-30.
    View in: PubMed
    Score: 0.340
  12. Incidence of graft extrusion following minimally invasive transforaminal lumbar interbody fusion. J Clin Neurosci. 2016 Feb; 24:88-93.
    View in: PubMed
    Score: 0.320
  13. Minimally Invasive Transforaminal Lumbar Interbody Fusion (TLIF) for Spondylolisthesis in 282 Patients: In Situ Arthrodesis versus Reduction. World Neurosurg. 2015 Jul; 84(1):108-13.
    View in: PubMed
    Score: 0.305
  14. Intraoperative and perioperative complications in minimally invasive transforaminal lumbar interbody fusion: a review of 513 patients. J Neurosurg Spine. 2015 May; 22(5):487-95.
    View in: PubMed
    Score: 0.304
  15. Incidence of lumbar spine pedicle breach after percutaneous screw fixation: a radiographic evaluation of 601 screws in 151 patients. J Spinal Disord Tech. 2014 Oct; 27(7):358-63.
    View in: PubMed
    Score: 0.296
  16. Accurate pedicle screw placement--a perspective statement. World Neurosurg. 2015 May; 83(5):747-9.
    View in: PubMed
    Score: 0.295
  17. The effect of surgical level on self-reported clinical outcomes after minimally invasive transforaminal lumbar interbody fusion: L4-L5 versus L5-S1. World Neurosurg. 2014 Jan; 81(1):177-82.
    View in: PubMed
    Score: 0.273
  18. Outcome following unilateral versus bilateral instrumentation in patients undergoing minimally invasive transforaminal lumbar interbody fusion: a single-center randomized prospective study. Neurosurg Focus. 2013 Aug; 35(2):E13.
    View in: PubMed
    Score: 0.273
  19. Perioperative and postoperative complications of single-level minimally invasive transforaminal lumbar interbody fusion in elderly adults. J Clin Neurosci. 2012 Jan; 19(1):111-4.
    View in: PubMed
    Score: 0.243
  20. The surgical technique of minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Sci. 2011 Sep; 55(3):259-64.
    View in: PubMed
    Score: 0.239
  21. Obesity and self-reported outcome after minimally invasive lumbar spinal fusion surgery. Neurosurgery. 2008 Nov; 63(5):956-60; discussion 960.
    View in: PubMed
    Score: 0.197
  22. Minimally invasive posterior thoracic fusion. Neurosurg Focus. 2008; 25(2):E9.
    View in: PubMed
    Score: 0.185
  23. The evolving presence of spinal neurosurgery in the spectrum of neurological surgery. Neurosurgery. 2007 Apr; 60(4):589-90.
    View in: PubMed
    Score: 0.176
  24. Anterior cervical discectomy and corpectomy. Neurosurgery. 2006 Apr; 58(4 Suppl 2):ONS-355-9; discussion ONS-359.
    View in: PubMed
    Score: 0.164
  25. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine. 2005 Aug; 3(2):98-105.
    View in: PubMed
    Score: 0.157
  26. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2003 Jun; 52(6):1512.
    View in: PubMed
    Score: 0.135
  27. Incremental benefits of circumferential minimally invasive surgery for increasingly frail patients with adult spinal deformity. J Neurosurg Spine. 2023 08 01; 39(2):168-174.
    View in: PubMed
    Score: 0.134
  28. Spinal Deformity Complexity Checklist for Minimally Invasive Surgery: Expert Consensus from the Minimally Invasive International Spine Study Group. World Neurosurg. 2023 May; 173:e472-e477.
    View in: PubMed
    Score: 0.132
  29. Bone grafting. Neurosurg Focus. 2003 Feb 15; 14(2):e8.
    View in: PubMed
    Score: 0.132
  30. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2002 Nov; 51(5 Suppl):S166-81.
    View in: PubMed
    Score: 0.130
  31. Two- and three-year outcomes of minimally invasive and hybrid correction of adult spinal deformity. J Neurosurg Spine. 2022 04 01; 36(4):595-608.
    View in: PubMed
    Score: 0.121
  32. Enhanced Recovery After Surgery Pathway for Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion Decreases Length of Stay and Opioid Consumption. Neurosurgery. 2021 02 16; 88(3):648-657.
    View in: PubMed
    Score: 0.115
  33. Comparison of radiographic parameters after anterior cervical discectomy and fusion with semiconstrained translational versus rotational plate systems. Clin Neurol Neurosurg. 2019 Aug; 183:105379.
    View in: PubMed
    Score: 0.102
  34. Analysis of Complications with Staged Surgery for Less Invasive Treatment of Adult Spinal Deformity. World Neurosurg. 2019 Jun; 126:e1337-e1342.
    View in: PubMed
    Score: 0.101
  35. Re-operation After Long-Segment Fusions for Adult Spinal Deformity: The Impact of Extending the Construct Below the Lumbar Spine. Neurosurgery. 2018 02 01; 82(2):211-219.
    View in: PubMed
    Score: 0.093
  36. Lateral extracavitary approach to the thoracic and thoracolumbar spine. Orthopedics. 1997 Jul; 20(7):605-10.
    View in: PubMed
    Score: 0.090
  37. Does MIS Surgery Allow for Shorter Constructs in the Surgical Treatment of Adult Spinal Deformity? Neurosurgery. 2017 03 01; 80(3):489-497.
    View in: PubMed
    Score: 0.088
  38. Utility of multilevel lateral interbody fusion of the thoracolumbar coronal curve apex in adult deformity surgery in combination with open posterior instrumentation and L5-S1 interbody fusion: a case-matched evaluation of 32 patients. J Neurosurg Spine. 2017 Feb; 26(2):208-219.
    View in: PubMed
    Score: 0.085
  39. An Outcome and Cost Analysis Comparing Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Intraoperative Fluoroscopy versus Computed Tomography-Guided Navigation. World Neurosurg. 2016 Oct; 94:255-260.
    View in: PubMed
    Score: 0.084
  40. Reoperation rates in minimally invasive, hybrid and open surgical treatment for adult spinal deformity with minimum 2-year follow-up. Eur Spine J. 2016 08; 25(8):2605-11.
    View in: PubMed
    Score: 0.082
  41. Spinal instrumentation for degenerative disease. Clin Neurosurg. 1996; 43:268-74.
    View in: PubMed
    Score: 0.081
  42. Comparison of Complications and Clinical and Radiographic Outcomes Between Nonobese and Obese Patients with Adult Spinal Deformity Undergoing Minimally Invasive Surgery. World Neurosurg. 2016 Mar; 87:55-60.
    View in: PubMed
    Score: 0.081
  43. Can a Minimal Clinically Important Difference Be Achieved in Elderly Patients with Adult Spinal Deformity Who Undergo Minimally Invasive Spinal Surgery? World Neurosurg. 2016 Feb; 86:168-72.
    View in: PubMed
    Score: 0.079
  44. The concave versus convex approach for minimally invasive lateral lumbar interbody fusion for thoracolumbar degenerative scoliosis. J Clin Neurosci. 2015 Oct; 22(10):1588-93.
    View in: PubMed
    Score: 0.078
  45. Comparison of two minimally invasive surgery strategies to treat adult spinal deformity. J Neurosurg Spine. 2015 Apr; 22(4):374-80.
    View in: PubMed
    Score: 0.076
  46. Less invasive surgery for treating adult spinal deformities: ceiling effects for deformity correction with 3 different techniques. Neurosurg Focus. 2014 May; 36(5):E12.
    View in: PubMed
    Score: 0.072
  47. Comparison of radiographic results after minimally invasive, hybrid, and open surgery for adult spinal deformity: a multicenter study of 184 patients. Neurosurg Focus. 2014 May; 36(5):E13.
    View in: PubMed
    Score: 0.072
  48. Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques. Neurosurg Focus. 2014 May; 36(5):E15.
    View in: PubMed
    Score: 0.072
  49. The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery. Neurosurg Focus. 2014 May; 36(5):E6.
    View in: PubMed
    Score: 0.072
  50. Lateral transpsoas lumbar interbody fusion: outcomes and deformity correction. Neurosurg Clin N Am. 2014 Apr; 25(2):353-60.
    View in: PubMed
    Score: 0.071
  51. Complications, outcomes, and need for fusion after minimally invasive posterior cervical foraminotomy and microdiscectomy. Spine J. 2014 Oct 01; 14(10):2405-11.
    View in: PubMed
    Score: 0.071
  52. Synthes spine drill instrumentation. Neurosurgery. 1993 Jul; 33(1):164-5.
    View in: PubMed
    Score: 0.068
  53. Measuring surgical outcomes in cervical spondylotic myelopathy patients undergoing anterior cervical discectomy and fusion: assessment of minimum clinically important difference. PLoS One. 2013; 8(6):e67408.
    View in: PubMed
    Score: 0.068
  54. Decision making in spinal instrumentation. Clin Neurosurg. 1993; 40:227-42.
    View in: PubMed
    Score: 0.066
  55. Abdominal complications following posterior spinal fusion in patients with previous abdominal surgeries. Neurosurg Focus. 2011 Oct; 31(4):E16.
    View in: PubMed
    Score: 0.060
  56. Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus. 2011 Oct; 31(4):E4.
    View in: PubMed
    Score: 0.060
  57. Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine. 2011 Jul; 15(1):92-6.
    View in: PubMed
    Score: 0.058
  58. An alternate method for placement of C-1 screws. J Neurosurg Spine. 2010 Apr; 12(4):337-41.
    View in: PubMed
    Score: 0.054
  59. The MISDEF2 algorithm: an updated algorithm for patient selection in minimally invasive deformity surgery. J Neurosurg Spine. 2019 Oct 25; 32(2):221-228.
    View in: PubMed
    Score: 0.026
  60. The impact of age on surgical goals for spinopelvic alignment in minimally invasive surgery for adult spinal deformity. J Neurosurg Spine. 2018 Nov 01; 29(5):560-564.
    View in: PubMed
    Score: 0.025
  61. A Critical Analysis of Sagittal Plane Deformity Correction With Minimally Invasive Adult Spinal Deformity Surgery: A 2-Year Follow-Up Study. Spine Deform. 2017 07; 5(4):265-271.
    View in: PubMed
    Score: 0.022
  62. Outcome analysis in lumbar spine: instabilities/degenerative disease. Clin Neurosurg. 1997; 44:297-303.
    View in: PubMed
    Score: 0.022
  63. Percutaneous lumbosacral fixation and fusion: anatomic study and two-year experience with a new method. Neurosurg Clin N Am. 1996 Jan; 7(1):99-106.
    View in: PubMed
    Score: 0.020
  64. Percutaneous lumbosacral fixation and fusion: anatomical study and two-year experience with a new method. Clin Neurosurg. 1996; 43:423-36.
    View in: PubMed
    Score: 0.020
  65. Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg. 1992 Dec; 77(6):860-70.
    View in: PubMed
    Score: 0.016
  66. The influence of transoral odontoid resection on stability of the craniovertebral junction. J Neurosurg. 1992 Oct; 77(4):525-30.
    View in: PubMed
    Score: 0.016
  67. Comparison of BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion: clinical and radiographic results of a randomized, controlled, clinical trial. Spine (Phila Pa 1976). 2009 Jan 15; 34(2):101-7.
    View in: PubMed
    Score: 0.012
  68. Instrumentation in patients with spinal infection. Neurosurg Focus. 2004 Dec 15; 17(6):E7.
    View in: PubMed
    Score: 0.009
  69. Primary reconstruction for spinal infections. J Neurosurg. 1997 Jun; 86(6):981-9.
    View in: PubMed
    Score: 0.006
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.