Header Logo

Connection

Richard Fessler to Retrospective Studies

This is a "connection" page, showing publications Richard Fessler has written about Retrospective Studies.
Connection Strength

2.140
  1. Comparison of minimally invasive decompression alone versus minimally invasive short-segment fusion in the setting of adult degenerative lumbar scoliosis: a propensity score-matched analysis. J Neurosurg Spine. 2023 09 01; 39(3):394-403.
    View in: PubMed
    Score: 0.122
  2. Expandable versus Static Transforaminal Lumbar Interbody Fusion Cages: 1-year Radiographic Parameters and Patient-Reported Outcomes. World Neurosurg. 2022 Mar; 159:e1-e7.
    View in: PubMed
    Score: 0.109
  3. Minimally Invasive Scoliosis Correction in Parkinson Disease: Retrospective Case Series. Oper Neurosurg (Hagerstown). 2020 11 16; 19(6):635-640.
    View in: PubMed
    Score: 0.102
  4. Minimally invasive options for surgical management of adjacent segment disease of the lumbar spine. Neurol India. 2018 May-Jun; 66(3):755-762.
    View in: PubMed
    Score: 0.085
  5. A Staged Protocol for Circumferential Minimally Invasive Surgical Correction of Adult Spinal Deformity. Neurosurgery. 2017 Nov 01; 81(5):733-739.
    View in: PubMed
    Score: 0.083
  6. Lumbar Radiculopathy in the Setting of Degenerative Scoliosis: MIS Decompression and Limited Correction are Better Options. Neurosurg Clin N Am. 2017 Jul; 28(3):335-339.
    View in: PubMed
    Score: 0.079
  7. Incidence of graft extrusion following minimally invasive transforaminal lumbar interbody fusion. J Clin Neurosci. 2016 Feb; 24:88-93.
    View in: PubMed
    Score: 0.072
  8. Utility of Readmission Rates as a Quality of Care Measure and Predictors of Readmission Within 30 Days After Spinal Surgery: a Single-Center, Multivariate Analysis. Spine (Phila Pa 1976). 2015 Nov; 40(22):1769-74.
    View in: PubMed
    Score: 0.072
  9. Cost minimization in treatment of adult degenerative scoliosis. J Neurosurg Spine. 2015 Dec; 23(6):798-806.
    View in: PubMed
    Score: 0.071
  10. Comparison of open and minimally invasive surgery for intradural-extramedullary spine tumors. Neurosurg Focus. 2015 Aug; 39(2):E11.
    View in: PubMed
    Score: 0.071
  11. Minimally Invasive Transforaminal Lumbar Interbody Fusion (TLIF) for Spondylolisthesis in 282 Patients: In Situ Arthrodesis versus Reduction. World Neurosurg. 2015 Jul; 84(1):108-13.
    View in: PubMed
    Score: 0.069
  12. Intraoperative and perioperative complications in minimally invasive transforaminal lumbar interbody fusion: a review of 513 patients. J Neurosurg Spine. 2015 May; 22(5):487-95.
    View in: PubMed
    Score: 0.068
  13. Comparison of symptomatic cerebral spinal fluid leak between patients undergoing minimally invasive versus open lumbar foraminotomy, discectomy, or laminectomy. World Neurosurg. 2014 Mar-Apr; 81(3-4):634-40.
    View in: PubMed
    Score: 0.063
  14. The effect of surgical level on self-reported clinical outcomes after minimally invasive transforaminal lumbar interbody fusion: L4-L5 versus L5-S1. World Neurosurg. 2014 Jan; 81(1):177-82.
    View in: PubMed
    Score: 0.062
  15. Microendoscopic decompression for cervical spondylotic myelopathy. Neurosurg Focus. 2013 Jul; 35(1):E8.
    View in: PubMed
    Score: 0.061
  16. Clinical outcomes of microendoscopic foraminotomy and decompression in the cervical spine. World Neurosurg. 2014 Feb; 81(2):422-7.
    View in: PubMed
    Score: 0.059
  17. Perioperative and postoperative complications of single-level minimally invasive transforaminal lumbar interbody fusion in elderly adults. J Clin Neurosci. 2012 Jan; 19(1):111-4.
    View in: PubMed
    Score: 0.055
  18. Perioperative results following open and minimally invasive single-level lumbar discectomy. J Clin Neurosci. 2011 Dec; 18(12):1667-70.
    View in: PubMed
    Score: 0.054
  19. Complications of open compared to minimally invasive lumbar spine decompression. J Clin Neurosci. 2011 Oct; 18(10):1360-4.
    View in: PubMed
    Score: 0.053
  20. Clinical outcomes after microendoscopic discectomy for recurrent lumbar disc herniation. J Spinal Disord Tech. 2010 Feb; 23(1):30-4.
    View in: PubMed
    Score: 0.048
  21. Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine. 2009 Oct; 11(4):471-6.
    View in: PubMed
    Score: 0.047
  22. Y-stent-assisted coil embolization for the management of unruptured cerebral aneurysms: report of six cases. Acta Neurochir (Wien). 2009 Dec; 151(12):1663-72.
    View in: PubMed
    Score: 0.046
  23. Obesity and self-reported outcome after minimally invasive lumbar spinal fusion surgery. Neurosurgery. 2008 Nov; 63(5):956-60; discussion 960.
    View in: PubMed
    Score: 0.044
  24. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine. 2005 Aug; 3(2):98-105.
    View in: PubMed
    Score: 0.035
  25. Incremental benefits of circumferential minimally invasive surgery for increasingly frail patients with adult spinal deformity. J Neurosurg Spine. 2023 08 01; 39(2):168-174.
    View in: PubMed
    Score: 0.030
  26. Spinal Deformity Complexity Checklist for Minimally Invasive Surgery: Expert Consensus from the Minimally Invasive International Spine Study Group. World Neurosurg. 2023 May; 173:e472-e477.
    View in: PubMed
    Score: 0.030
  27. Two- and three-year outcomes of minimally invasive and hybrid correction of adult spinal deformity. J Neurosurg Spine. 2022 04 01; 36(4):595-608.
    View in: PubMed
    Score: 0.027
  28. The MISDEF2 algorithm: an updated algorithm for patient selection in minimally invasive deformity surgery. J Neurosurg Spine. 2019 Oct 25; 32(2):221-228.
    View in: PubMed
    Score: 0.024
  29. Complex atlantoaxial fractures. J Neurosurg. 1999 Oct; 91(2 Suppl):139-43.
    View in: PubMed
    Score: 0.024
  30. Minimally Invasive Surgery for Mild-to-Moderate Adult Spinal Deformities: Impact on Intensive Care Unit and Hospital Stay. World Neurosurg. 2019 Jul; 127:e649-e655.
    View in: PubMed
    Score: 0.023
  31. Analysis of Complications with Staged Surgery for Less Invasive Treatment of Adult Spinal Deformity. World Neurosurg. 2019 Jun; 126:e1337-e1342.
    View in: PubMed
    Score: 0.023
  32. Anterior cervical corpectomy for cervical spondylotic myelopathy. Neurosurgery. 1998 Aug; 43(2):257-65; discussion 265-7.
    View in: PubMed
    Score: 0.022
  33. Patients with High Pelvic Tilt Achieve the Same Clinical Success as Those with Low Pelvic Tilt After Minimally Invasive Adult Deformity Surgery. Neurosurgery. 2018 08 01; 83(2):270-276.
    View in: PubMed
    Score: 0.022
  34. Home Versus Rehabilitation: Factors that Influence Disposition After Minimally Invasive Surgery in Adult Spinal Deformity Surgery. World Neurosurg. 2018 Oct; 118:e610-e615.
    View in: PubMed
    Score: 0.022
  35. A Critical Analysis of Sagittal Plane Deformity Correction With Minimally Invasive Adult Spinal Deformity Surgery: A 2-Year Follow-Up Study. Spine Deform. 2017 07; 5(4):265-271.
    View in: PubMed
    Score: 0.020
  36. Does MIS Surgery Allow for Shorter Constructs in the Surgical Treatment of Adult Spinal Deformity? Neurosurgery. 2017 03 01; 80(3):489-497.
    View in: PubMed
    Score: 0.020
  37. Utility of multilevel lateral interbody fusion of the thoracolumbar coronal curve apex in adult deformity surgery in combination with open posterior instrumentation and L5-S1 interbody fusion: a case-matched evaluation of 32 patients. J Neurosurg Spine. 2017 Feb; 26(2):208-219.
    View in: PubMed
    Score: 0.019
  38. Clinical and radiographic parameters associated with best versus worst clinical outcomes in minimally invasive spinal deformity surgery. J Neurosurg Spine. 2016 Jul; 25(1):21-5.
    View in: PubMed
    Score: 0.018
  39. Does Minimally Invasive Percutaneous Posterior Instrumentation Reduce Risk of Proximal Junctional Kyphosis in Adult Spinal Deformity Surgery? A Propensity-Matched Cohort Analysis. Neurosurgery. 2016 Jan; 78(1):101-8.
    View in: PubMed
    Score: 0.018
  40. Comparison of Complications and Clinical and Radiographic Outcomes Between Nonobese and Obese Patients with Adult Spinal Deformity Undergoing Minimally Invasive Surgery. World Neurosurg. 2016 Mar; 87:55-60.
    View in: PubMed
    Score: 0.018
  41. The concave versus convex approach for minimally invasive lateral lumbar interbody fusion for thoracolumbar degenerative scoliosis. J Clin Neurosci. 2015 Oct; 22(10):1588-93.
    View in: PubMed
    Score: 0.018
  42. Comparison of two minimally invasive surgery strategies to treat adult spinal deformity. J Neurosurg Spine. 2015 Apr; 22(4):374-80.
    View in: PubMed
    Score: 0.017
  43. Less invasive surgery for treating adult spinal deformities: ceiling effects for deformity correction with 3 different techniques. Neurosurg Focus. 2014 May; 36(5):E12.
    View in: PubMed
    Score: 0.016
  44. Comparison of radiographic results after minimally invasive, hybrid, and open surgery for adult spinal deformity: a multicenter study of 184 patients. Neurosurg Focus. 2014 May; 36(5):E13.
    View in: PubMed
    Score: 0.016
  45. Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques. Neurosurg Focus. 2014 May; 36(5):E15.
    View in: PubMed
    Score: 0.016
  46. Complications, outcomes, and need for fusion after minimally invasive posterior cervical foraminotomy and microdiscectomy. Spine J. 2014 Oct 01; 14(10):2405-11.
    View in: PubMed
    Score: 0.016
  47. Evidence-based management of central cord syndrome. Neurosurg Focus. 2013 Jul; 35(1):E6.
    View in: PubMed
    Score: 0.015
  48. Minimally invasive discectomy for the treatment of disc herniation causing cauda equina syndrome. J Clin Neurosci. 2011 Sep; 18(9):1219-23.
    View in: PubMed
    Score: 0.013
  49. Degenerative spine disease : pathologic findings in 985 surgical specimens. Am J Clin Pathol. 2006 Feb; 125(2):193-202.
    View in: PubMed
    Score: 0.009
  50. Instrumentation in patients with spinal infection. Neurosurg Focus. 2004 Dec 15; 17(6):E7.
    View in: PubMed
    Score: 0.008
  51. Primary reconstruction for spinal infections. J Neurosurg. 1997 Jun; 86(6):981-9.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.