Header Logo

Connection

Richard Fessler to Aged

This is a "connection" page, showing publications Richard Fessler has written about Aged.
Connection Strength

2.011
  1. Patient Satisfaction Following Minimally Invasive and Open Surgeries for Adult Spinal Deformity. World Neurosurg. 2021 11; 155:e301-e314.
    View in: PubMed
    Score: 0.075
  2. Patient Expectations of Adult Spinal Deformity Correction Surgery. World Neurosurg. 2021 02; 146:e931-e939.
    View in: PubMed
    Score: 0.071
  3. Comparison of radiographic parameters after anterior cervical discectomy and fusion with semiconstrained translational versus rotational plate systems. Clin Neurol Neurosurg. 2019 Aug; 183:105379.
    View in: PubMed
    Score: 0.064
  4. Minimally invasive options for surgical management of adjacent segment disease of the lumbar spine. Neurol India. 2018 May-Jun; 66(3):755-762.
    View in: PubMed
    Score: 0.060
  5. A Staged Protocol for Circumferential Minimally Invasive Surgical Correction of Adult Spinal Deformity. Neurosurgery. 2017 Nov 01; 81(5):733-739.
    View in: PubMed
    Score: 0.058
  6. Assessment of Paraspinal Muscle Cross-sectional Area After Lumbar Decompression: Minimally Invasive Versus Open Approaches. Clin Spine Surg. 2017 04; 30(3):E162-E168.
    View in: PubMed
    Score: 0.055
  7. "Push-Through" Rod Passage Technique for the Improvement of Lumbar Lordosis and Sagittal Balance in Minimally Invasive Adult Degenerative Scoliosis Surgery. Clin Spine Surg. 2016 10; 29(8):323-30.
    View in: PubMed
    Score: 0.053
  8. Incidence of graft extrusion following minimally invasive transforaminal lumbar interbody fusion. J Clin Neurosci. 2016 Feb; 24:88-93.
    View in: PubMed
    Score: 0.050
  9. Cost minimization in treatment of adult degenerative scoliosis. J Neurosurg Spine. 2015 Dec; 23(6):798-806.
    View in: PubMed
    Score: 0.049
  10. Comparison of open and minimally invasive surgery for intradural-extramedullary spine tumors. Neurosurg Focus. 2015 Aug; 39(2):E11.
    View in: PubMed
    Score: 0.049
  11. The relationship between preoperative general mental health and postoperative quality of life in minimally invasive lumbar spine surgery. Neurosurgery. 2015 Jun; 76(6):672-9.
    View in: PubMed
    Score: 0.049
  12. Biomechanical effects of the transcondylar approach on the craniovertebral junction. Clin Anat. 2015 Jul; 28(5):683-9.
    View in: PubMed
    Score: 0.048
  13. Minimally Invasive Transforaminal Lumbar Interbody Fusion (TLIF) for Spondylolisthesis in 282 Patients: In Situ Arthrodesis versus Reduction. World Neurosurg. 2015 Jul; 84(1):108-13.
    View in: PubMed
    Score: 0.048
  14. Incidence of lumbar spine pedicle breach after percutaneous screw fixation: a radiographic evaluation of 601 screws in 151 patients. J Spinal Disord Tech. 2014 Oct; 27(7):358-63.
    View in: PubMed
    Score: 0.046
  15. Comparison of symptomatic cerebral spinal fluid leak between patients undergoing minimally invasive versus open lumbar foraminotomy, discectomy, or laminectomy. World Neurosurg. 2014 Mar-Apr; 81(3-4):634-40.
    View in: PubMed
    Score: 0.044
  16. The effect of surgical level on self-reported clinical outcomes after minimally invasive transforaminal lumbar interbody fusion: L4-L5 versus L5-S1. World Neurosurg. 2014 Jan; 81(1):177-82.
    View in: PubMed
    Score: 0.043
  17. Outcome following unilateral versus bilateral instrumentation in patients undergoing minimally invasive transforaminal lumbar interbody fusion: a single-center randomized prospective study. Neurosurg Focus. 2013 Aug; 35(2):E13.
    View in: PubMed
    Score: 0.043
  18. Microendoscopic decompression for cervical spondylotic myelopathy. Neurosurg Focus. 2013 Jul; 35(1):E8.
    View in: PubMed
    Score: 0.043
  19. Clinical outcomes of microendoscopic foraminotomy and decompression in the cervical spine. World Neurosurg. 2014 Feb; 81(2):422-7.
    View in: PubMed
    Score: 0.041
  20. Minimally invasive thoracic microendoscopic diskectomy: surgical technique and case series. World Neurosurg. 2013 Sep-Oct; 80(3-4):421-7.
    View in: PubMed
    Score: 0.040
  21. Perioperative and postoperative complications of single-level minimally invasive transforaminal lumbar interbody fusion in elderly adults. J Clin Neurosci. 2012 Jan; 19(1):111-4.
    View in: PubMed
    Score: 0.038
  22. The surgical technique of minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Sci. 2011 Sep; 55(3):259-64.
    View in: PubMed
    Score: 0.038
  23. Complications of open compared to minimally invasive lumbar spine decompression. J Clin Neurosci. 2011 Oct; 18(10):1360-4.
    View in: PubMed
    Score: 0.037
  24. Minimally invasive approach for far lateral disc herniations: results from 20 patients. Minim Invasive Neurosurg. 2010 Jun; 53(3):122-6.
    View in: PubMed
    Score: 0.035
  25. Clinical outcomes after microendoscopic discectomy for recurrent lumbar disc herniation. J Spinal Disord Tech. 2010 Feb; 23(1):30-4.
    View in: PubMed
    Score: 0.034
  26. Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine. 2009 Oct; 11(4):471-6.
    View in: PubMed
    Score: 0.033
  27. Y-stent-assisted coil embolization for the management of unruptured cerebral aneurysms: report of six cases. Acta Neurochir (Wien). 2009 Dec; 151(12):1663-72.
    View in: PubMed
    Score: 0.032
  28. Obesity and self-reported outcome after minimally invasive lumbar spinal fusion surgery. Neurosurgery. 2008 Nov; 63(5):956-60; discussion 960.
    View in: PubMed
    Score: 0.031
  29. Minimally invasive posterior thoracic fusion. Neurosurg Focus. 2008; 25(2):E9.
    View in: PubMed
    Score: 0.029
  30. Cervical juxtafacet cysts: case report and literature review. Spine J. 2006 May-Jun; 6(3):279-81.
    View in: PubMed
    Score: 0.026
  31. Is the X STOP interspinous implant a safe and effective treatment for neurogenic intermittent claudication? Nat Clin Pract Neurol. 2006 Jan; 2(1):22-3.
    View in: PubMed
    Score: 0.025
  32. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine. 2005 Aug; 3(2):98-105.
    View in: PubMed
    Score: 0.025
  33. Incremental benefits of circumferential minimally invasive surgery for increasingly frail patients with adult spinal deformity. J Neurosurg Spine. 2023 08 01; 39(2):168-174.
    View in: PubMed
    Score: 0.021
  34. Minimally invasive cervical microendoscopic foraminotomy: an initial clinical experience. Neurosurgery. 2002 Nov; 51(5 Suppl):S37-45.
    View in: PubMed
    Score: 0.020
  35. Endoscopically assisted transoral-transpharyngeal approach to the craniovertebral junction. Neurosurgery. 2002 Nov; 51(5 Suppl):S60-6.
    View in: PubMed
    Score: 0.020
  36. Vertebroplasty for osteoporotic compression fractures: current practice and evolving techniques. Neurosurgery. 2002 Nov; 51(5 Suppl):S96-103.
    View in: PubMed
    Score: 0.020
  37. Microendoscopic lumbar discectomy: technical note. Neurosurgery. 2002 Nov; 51(5 Suppl):S129-36.
    View in: PubMed
    Score: 0.020
  38. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002 Nov; 51(5 Suppl):S146-54.
    View in: PubMed
    Score: 0.020
  39. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2002 Nov; 51(5 Suppl):S166-81.
    View in: PubMed
    Score: 0.020
  40. Enhanced Recovery After Surgery Pathway for Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion Decreases Length of Stay and Opioid Consumption. Neurosurgery. 2021 02 16; 88(3):648-657.
    View in: PubMed
    Score: 0.018
  41. Intermediate-term clinical and radiographic outcomes with less invasive adult spinal deformity surgery: patients with a minimum follow-up of 4 years. Acta Neurochir (Wien). 2020 06; 162(6):1393-1400.
    View in: PubMed
    Score: 0.017
  42. Endoscopic foraminotomy using MED system in cadaveric specimens. Spine (Phila Pa 1976). 2000 Jan 15; 25(2):260-4.
    View in: PubMed
    Score: 0.017
  43. The MISDEF2 algorithm: an updated algorithm for patient selection in minimally invasive deformity surgery. J Neurosurg Spine. 2019 Oct 25; 32(2):221-228.
    View in: PubMed
    Score: 0.017
  44. Complex atlantoaxial fractures. J Neurosurg. 1999 Oct; 91(2 Suppl):139-43.
    View in: PubMed
    Score: 0.016
  45. Analysis of Complications with Staged Surgery for Less Invasive Treatment of Adult Spinal Deformity. World Neurosurg. 2019 Jun; 126:e1337-e1342.
    View in: PubMed
    Score: 0.016
  46. The impact of age on surgical goals for spinopelvic alignment in minimally invasive surgery for adult spinal deformity. J Neurosurg Spine. 2018 Nov 01; 29(5):560-564.
    View in: PubMed
    Score: 0.015
  47. Anterior cervical corpectomy for cervical spondylotic myelopathy. Neurosurgery. 1998 Aug; 43(2):257-65; discussion 265-7.
    View in: PubMed
    Score: 0.015
  48. Patients with High Pelvic Tilt Achieve the Same Clinical Success as Those with Low Pelvic Tilt After Minimally Invasive Adult Deformity Surgery. Neurosurgery. 2018 08 01; 83(2):270-276.
    View in: PubMed
    Score: 0.015
  49. Home Versus Rehabilitation: Factors that Influence Disposition After Minimally Invasive Surgery in Adult Spinal Deformity Surgery. World Neurosurg. 2018 Oct; 118:e610-e615.
    View in: PubMed
    Score: 0.015
  50. Re-operation After Long-Segment Fusions for Adult Spinal Deformity: The Impact of Extending the Construct Below the Lumbar Spine. Neurosurgery. 2018 02 01; 82(2):211-219.
    View in: PubMed
    Score: 0.015
  51. Impact of Anemia and Transfusion on Readmission and Length of Stay After Spinal Surgery: A Single-center Study of 1187 Operations. Clin Spine Surg. 2017 Dec; 30(10):E1338-E1342.
    View in: PubMed
    Score: 0.014
  52. Lateral extracavitary approach to the thoracic and thoracolumbar spine. Orthopedics. 1997 Jul; 20(7):605-10.
    View in: PubMed
    Score: 0.014
  53. A Critical Analysis of Sagittal Plane Deformity Correction With Minimally Invasive Adult Spinal Deformity Surgery: A 2-Year Follow-Up Study. Spine Deform. 2017 07; 5(4):265-271.
    View in: PubMed
    Score: 0.014
  54. Utility of multilevel lateral interbody fusion of the thoracolumbar coronal curve apex in adult deformity surgery in combination with open posterior instrumentation and L5-S1 interbody fusion: a case-matched evaluation of 32 patients. J Neurosurg Spine. 2017 Feb; 26(2):208-219.
    View in: PubMed
    Score: 0.013
  55. An Outcome and Cost Analysis Comparing Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Intraoperative Fluoroscopy versus Computed Tomography-Guided Navigation. World Neurosurg. 2016 Oct; 94:255-260.
    View in: PubMed
    Score: 0.013
  56. Reoperation rates in minimally invasive, hybrid and open surgical treatment for adult spinal deformity with minimum 2-year follow-up. Eur Spine J. 2016 08; 25(8):2605-11.
    View in: PubMed
    Score: 0.013
  57. Does Minimally Invasive Percutaneous Posterior Instrumentation Reduce Risk of Proximal Junctional Kyphosis in Adult Spinal Deformity Surgery? A Propensity-Matched Cohort Analysis. Neurosurgery. 2016 Jan; 78(1):101-8.
    View in: PubMed
    Score: 0.013
  58. Comparison of Complications and Clinical and Radiographic Outcomes Between Nonobese and Obese Patients with Adult Spinal Deformity Undergoing Minimally Invasive Surgery. World Neurosurg. 2016 Mar; 87:55-60.
    View in: PubMed
    Score: 0.013
  59. Can a Minimal Clinically Important Difference Be Achieved in Elderly Patients with Adult Spinal Deformity Who Undergo Minimally Invasive Spinal Surgery? World Neurosurg. 2016 Feb; 86:168-72.
    View in: PubMed
    Score: 0.012
  60. Comparison of two minimally invasive surgery strategies to treat adult spinal deformity. J Neurosurg Spine. 2015 Apr; 22(4):374-80.
    View in: PubMed
    Score: 0.012
  61. Less invasive surgery for treating adult spinal deformities: ceiling effects for deformity correction with 3 different techniques. Neurosurg Focus. 2014 May; 36(5):E12.
    View in: PubMed
    Score: 0.011
  62. Comparison of radiographic results after minimally invasive, hybrid, and open surgery for adult spinal deformity: a multicenter study of 184 patients. Neurosurg Focus. 2014 May; 36(5):E13.
    View in: PubMed
    Score: 0.011
  63. Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques. Neurosurg Focus. 2014 May; 36(5):E15.
    View in: PubMed
    Score: 0.011
  64. Biomechanical effects of a unilateral approach to minimally invasive lumbar decompression. PLoS One. 2014; 9(3):e92611.
    View in: PubMed
    Score: 0.011
  65. Risk factors and long-term survival in adult patients with primary malignant spinal cord astrocytomas. J Neurooncol. 2013 12; 115(3):493-503.
    View in: PubMed
    Score: 0.011
  66. Thoracic disc herniations. Neurosurg Clin N Am. 1993 Jan; 4(1):75-90.
    View in: PubMed
    Score: 0.010
  67. The influence of transoral odontoid resection on stability of the craniovertebral junction. J Neurosurg. 1992 Oct; 77(4):525-30.
    View in: PubMed
    Score: 0.010
  68. Epidural lipomatosis in steroid-treated patients. Spine (Phila Pa 1976). 1992 Feb; 17(2):183-8.
    View in: PubMed
    Score: 0.010
  69. Abdominal complications following posterior spinal fusion in patients with previous abdominal surgeries. Neurosurg Focus. 2011 Oct; 31(4):E16.
    View in: PubMed
    Score: 0.009
  70. Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine. 2011 Jul; 15(1):92-6.
    View in: PubMed
    Score: 0.009
  71. An alternate method for placement of C-1 screws. J Neurosurg Spine. 2010 Apr; 12(4):337-41.
    View in: PubMed
    Score: 0.009
  72. Comparison of BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion: clinical and radiographic results of a randomized, controlled, clinical trial. Spine (Phila Pa 1976). 2009 Jan 15; 34(2):101-7.
    View in: PubMed
    Score: 0.008
  73. Degenerative spine disease : pathologic findings in 985 surgical specimens. Am J Clin Pathol. 2006 Feb; 125(2):193-202.
    View in: PubMed
    Score: 0.006
  74. Instrumentation in patients with spinal infection. Neurosurg Focus. 2004 Dec 15; 17(6):E7.
    View in: PubMed
    Score: 0.006
  75. Minimally invasive surgical treatment of lumbar synovial cysts. Neurosurgery. 2004 Jan; 54(1):107-11; discussion 111-2.
    View in: PubMed
    Score: 0.006
  76. Primary reconstruction for spinal infections. J Neurosurg. 1997 Jun; 86(6):981-9.
    View in: PubMed
    Score: 0.003
  77. Prospective, multicenter study of spinal cord stimulation for relief of chronic back and extremity pain. Spine (Phila Pa 1976). 1996 Dec 01; 21(23):2786-94.
    View in: PubMed
    Score: 0.003
  78. Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg. 1992 Dec; 77(6):860-70.
    View in: PubMed
    Score: 0.003
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.