Profiles

Keywords
Last Name
Institution

Connection

Search Results to Tibor Glant

This is a "connection" page, showing the details of why an item matched the keywords from your search.

                     
                     

One or more keywords matched the following properties of Glant, Tibor

PropertyValue
overview Originally as a physician, after spending three years in full-time research (Joint Diseases Laboratories, Shriners Hospital, Montreal, Canada and NIH/NIDR Bethesda), I have fundamentally changed my career converting my clinical experience and training to biomedical science. My major research interest during the past 30 years has been autoimmunity and autoimmune regulation of T and B cells in rheumatoid arthritis (RA) and ankylosing spondylitis (AS), and its corresponding animal models. I have generated monoclonal antibodies (mAbs) to cartilage antigenic components, and used these mAbs for immuno-electron microscopic localization of cartilage matrix molecules in aging and diseased cartilages. During the production of mAbs, serendipitously, I (and my immediate colleagues) “discovered” cartilage proteoglycan (PG) aggrecan-induced arthritis (PGIA) in genetically susceptible (arthritis-prone) BALB/c mice. I have had a long-standing interest and commitment to training of medical students for histopathology, and later on scientists and physician-scientists. In addition to mentoring pre- and postdoctoral trainees in my laboratory and faculty members, I was PI of numerous R01, P01 and R21 NIH grants; I was always funded since I moved to the USA. My early research was thymosin-producing epithelioid cells expected to control early T cell selection in mouse embryos and the mechanisms of Wasting syndrome. Simultaneously, I studied cartilage and bone development as well as cartilage repair and bone healing in animal models, and immunogenicity/antigenicity of cartilage and bone non-collagenous macromolecules. This included numerous histochemistry (mostly enzyme and immune histochemistry), biochemical and immunological methods. I was the first to localize proteoglycan (PG) aggrecan and link protein by immune electron microscopy in cartilage tissue, and first described the autoimmune potential of cartilage PG in patients with RA or ankylosing spondylitis. I/we have sequenced the core proteins of mouse and canine cartilage PG aggrecans, and described splice variants of human PG aggrecan. These pioneer studies were repeated and extended in many laboratories. My expertise in bone and cartilage biochemistry and biology was beneficial when I/we have studied the mechanism of aseptic loosening of total joint replacements, which studies then changed the orthopedic term/diagnosis from “cement disease” to “particulate disease”. Submicron-sized wear debris/particulates are phagocytized by macrophages, fibroblasts and osteoblast, trigger these cells to secrete pro-inflammatory cytokines and proteolytic enzymes leading to aseptic bone resorption and loosening of prosthetic device. After I/we described the PG (aggrecan)-induced arthritis (PGIA) in BALB/c mice in 1987, a large number of studies focused on the immune pathomechanism of this model of RA and mapping studies of (auto)epitopes. PGIA model shares similarities with RA as indicated by clinical assessments, laboratory tests, and histopathology of diarthrodial joints. The development of the disease in genetically susceptible mice is based upon the development of cross-reactive immune responses between the immunizing (human) and self (mouse) cartilage PG. The recessive inheritance of disease susceptibility, as in RA, is dictated by both MHC- and non-MHC-associated genes. I/we identified dominant (arthritic) and subdominant epitopes of human and mouse (self) PG, tested the arthritogenic potential of human cartilage PG, and I generated recombinant human G1 domain (a globular domain of PG which carry all arthritogenic epitopes. This model was used to test the efficacy of Leflunomide (component 418). Numerous laboratories use the PGIA model all over the world, and human studies led to the identification of citrullinated PG epitopes in RA patients. A fourth and most recent research direction is the genetic and epigenetic alterations in PGIA model and in RA patients. I/we identified over 25 quantitative trait loci (QTLs) in different genetic combination of F2 mice. A special select direction of these genetic studies was to generate congenic mice (a short resistant DBA2 allele in susceptible BALB/c background). These congenic mice were/are tested for arthritis susceptibility; genomic regions sequenced and mutated genes selected for in vitro and in vivo studies. Eight of these 25 QTL are syntenic with RA genomic risk loci. From these 8 overlapping RA risk loci we have selected mouse chromosomes 2 and 3, which are highly susceptible to arthritis and syntenic with human chromosomes 9 and 1. Mouse/human susceptible regions carry the PTPN22 (mChr3/hChr1) and C5/TRAF1/PHF19 (mChr2/hChr9) RA risk alleles. The mutated genes are studied in vitro and generating and testing gene-deficient mice for arthritis in susceptible BALB/c background, and allele-specific transgenic mice to rescue the gene deficiency-induced defect(s). My Scopus API key: 458a8af4ddad17c0c313a5e8b8454348 My Orcid ID: https://orcid.org/0000-0002-1706-3820 MY NIH COMMONS: TGLANT Research Areas: Autoimmunity, Rheumatoid Arthritis, Ankylosing Spondylitis, Genetics, Periprosthetic osteolysis My Faculty Profile at Rush University Medical Center: https://www.rushu.rush.edu/faculty/tibor-t-glant-md-phd Education: MD, University of Medical School (DOTE) Debrecen, Hungary PhD, University of Medical School (DOTE) Debrecen, Hungary DMsc. Hungarian Academy of Sciences, Budapest, Hungary

One or more keywords matched the following items that are connected to Glant, Tibor

Item TypeName
Concept Aggrecans
Academic Article Serum keratan sulfate--a marker of predisposition to polyarticular osteoarthritis.
Academic Article Epitopes of cartilage core proteins and GAG pattern in human non-Hodgkin lymphoma xenografts.
Academic Article Mapping of arthritogenic/autoimmune epitopes of cartilage aggrecans in proteoglycan-induced arthritis.
Academic Article Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage.
Academic Article A proteoglycan (aggrecan)-specific T cell hybridoma induces arthritis in BALB/c mice.
Academic Article Interferon-gamma but not granulocyte/macrophage colony-stimulating factor augments proteoglycan presentation by synovial cells and chondrocytes to an autopathogenic T cell hybridoma.
Academic Article Antigen-specific B cells present cartilage proteoglycan (aggrecan) to an autoreactive T cell hybridoma derived from a mouse with proteoglycan-induced arthritis.
Academic Article Complete coding sequence, deduced primary structure, chromosomal localization, and structural analysis of murine aggrecan.
Academic Article Expression of alternatively spliced epidermal growth factor-like domains in aggrecans of different species. Evidence for a novel module.
Academic Article Substrate specificity of 'elastomucoproteinase': an enzyme which can degrade cartilage aggrecan.
Academic Article Species-specific alternative splicing of the epidermal growth factor-like domain 1 of cartilage aggrecan.
Academic Article Changes in messenger RNA and protein levels of proteoglycans and link protein in human osteoarthritic cartilage samples.
Academic Article Critical roles of glycosaminoglycan side chains of cartilage proteoglycan (aggrecan) in antigen recognition and presentation.
Academic Article Progressive polyarthritis induced in BALB/c mice by aggrecan from normal and osteoarthritic human cartilage.
Academic Article Proteoglycan (aggrecan)-induced arthritis in BALB/c mice is a Th1-type disease regulated by Th2 cytokines.
Academic Article Complex pattern of Th1 and Th2 activation with a preferential increase of autoreactive Th1 cells in BALB/c mice with proteoglycan (aggrecan)-induced arthritis.
Academic Article Th1 and Th2 cytokines regulate proteoglycan-specific autoantibody isotypes and arthritis.
Academic Article T and B cell recovery in arthritis adoptively transferred to SCID mice: antigen-specific activation is required for restoration of autopathogenic CD4+ Th1 cells in a syngeneic system.
Academic Article Continuous nasal administration of antigen is critical to maintain tolerance in adoptively transferred autoimmune arthritis in SCID mice.
Academic Article Spontaneous and experimental osteoarthritis in dog: similarities and differences in proteoglycan levels.
Academic Article Differential recognition of altered peptide ligands distinguishes two functionally discordant (arthritogenic and nonarthritogenic) autoreactive T cell hybridoma clones.
Academic Article Induction of arthritis in SCID mice by T cells specific for the "shared epitope" sequence in the G3 domain of human cartilage proteoglycan.
Academic Article Induction of arthritis in HLA-DR4-humanized and HLA-DQ8-humanized mice by human cartilage proteoglycan aggrecan but only in the presence of an appropriate (non-MHC) genetic background.
Academic Article Proteoglycan aggrecan-induced arthritis: a murine autoimmune model of rheumatoid arthritis.
Academic Article Genetic control of experimental spondylarthropathy.
Academic Article T-cell recognition of differentially tolerated epitopes of cartilage proteoglycan aggrecan in arthritis.
Academic Article Molecular manipulation with the arthritogenic epitopes of the G1 domain of human cartilage proteoglycan aggrecan.
Academic Article Experimental spondyloarthropathies: animal models of ankylosing spondylitis.
Academic Article Increased arthritis susceptibility in cartilage proteoglycan-specific T cell receptor-transgenic mice.
Academic Article Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis.
Academic Article Th1/Th17 polarization and acquisition of an arthritogenic phenotype in arthritis-susceptible BALB/c, but not in MHC-matched, arthritis-resistant DBA/2 mice.
Academic Article Proteoglycan-induced arthritis and recombinant human proteoglycan aggrecan G1 domain-induced arthritis in BALB/c mice resembling two subtypes of rheumatoid arthritis.
Academic Article Interferon-? regulates discordant mechanisms of uveitis versus joint and axial disease in a murine model resembling spondylarthritis.
Academic Article T cell receptor (TCR) signal strength controls arthritis severity in proteoglycan-specific TCR transgenic mice.
Academic Article Neutralization of IL-17 ameliorates uveitis but damages photoreceptors in a murine model of spondyloarthritis.
Academic Article Arthritogenic T cells drive the recovery of autoantibody-producing B cell homeostasis and the adoptive transfer of arthritis in SCID mice.
Academic Article The role of citrullination of an immunodominant proteoglycan (PG) aggrecan T cell epitope in BALB/c mice with PG-induced arthritis.
Academic Article Proteoglycan aggrecan conducting T cell activation and apoptosis in a murine model of rheumatoid arthritis.
Academic Article Characterization and Localization of Citrullinated Proteoglycan Aggrecan in Human Articular Cartilage.
Academic Article Immune Recognition of Citrullinated Proteoglycan Aggrecan Epitopes in Mice with Proteoglycan-Induced Arthritis and in Patients with Rheumatoid Arthritis.
Academic Article Aggrecan: A Target Molecule of Autoimmune Reactions.
Academic Article An epitope-specific DerG-PG70 LEAPS vaccine modulates T cell responses and suppresses arthritis progression in two related murine models of rheumatoid arthritis.
Academic Article ZAP-70 Regulates Autoimmune Arthritis via Alterations in T Cell Activation and Apoptosis.
Academic Article Vaccination by Two DerG LEAPS Conjugates Incorporating Distinct Proteoglycan (PG, Aggrecan) Epitopes Provides Therapy by Different Immune Mechanisms in a Mouse Model of Rheumatoid Arthritis.

Search Criteria
  • Aggrecans