Header Logo

Connection

Dale (Rick) Sumner to Rats, Sprague-Dawley

This is a "connection" page, showing publications Dale (Rick) Sumner has written about Rats, Sprague-Dawley.
Connection Strength

1.940
  1. Implant surface alters compartmental-specific contributions to fixation strength in rats. J Orthop Res. 2020 06; 38(6):1208-1215.
    View in: PubMed
    Score: 0.160
  2. Early changes in serum osteocalcin and body weight are predictive of implant fixation in a rat model of implant loosening. J Orthop Res. 2020 06; 38(6):1216-1227.
    View in: PubMed
    Score: 0.160
  3. Calcium restriction during lactation has minimal effects on post-weaning mineral metabolism and bone recovery. J Bone Miner Metab. 2019 Jul; 37(4):648-657.
    View in: PubMed
    Score: 0.147
  4. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. J Bone Joint Surg Am. 2015 Jan 21; 97(2):133-40.
    View in: PubMed
    Score: 0.113
  5. Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res. 2014 Jul; 29(7):1597-607.
    View in: PubMed
    Score: 0.109
  6. Particle-induced osteolysis is not accompanied by systemic remodeling but is reflected by systemic bone biomarkers. J Orthop Res. 2014 Jul; 32(7):967-73.
    View in: PubMed
    Score: 0.107
  7. Implant placement increases bone remodeling transiently in a rat model. J Orthop Res. 2013 May; 31(5):800-6.
    View in: PubMed
    Score: 0.098
  8. Sclerostin antibody prevents particle-induced implant loosening by stimulating bone formation and inhibiting bone resorption in a rat model. Arthritis Rheum. 2012 Dec; 64(12):4012-20.
    View in: PubMed
    Score: 0.098
  9. Sclerostin antibody increases bone volume and enhances implant fixation in a rat model. J Bone Joint Surg Am. 2012 Sep 19; 94(18):1670-80.
    View in: PubMed
    Score: 0.096
  10. Bone turnover markers correlate with implant fixation in a rat model using LPS-doped particles to induced implant loosening. J Biomed Mater Res A. 2012 Apr; 100(4):918-28.
    View in: PubMed
    Score: 0.092
  11. Limitations of using micro-computed tomography to predict bone-implant contact and mechanical fixation. J Microsc. 2012 Jan; 245(1):34-42.
    View in: PubMed
    Score: 0.090
  12. Patterns and localization of gene expression during intramembranous bone regeneration in the rat femoral marrow ablation model. Calcif Tissue Int. 2005 Oct; 77(4):212-25.
    View in: PubMed
    Score: 0.059
  13. Local application of rhTGF-beta2 enhances peri-implant bone volume and bone-implant contact in a rat model. Bone. 2005 Jul; 37(1):55-62.
    View in: PubMed
    Score: 0.058
  14. Effect of low intensity pulsed ultrasound and BMP-2 on rat bone marrow stromal cell gene expression. J Orthop Res. 2005 May; 23(3):646-52.
    View in: PubMed
    Score: 0.058
  15. Local application of rhTGF-beta2 modulates dynamic gene expression in a rat implant model. Bone. 2005 May; 36(5):931-40.
    View in: PubMed
    Score: 0.057
  16. Patterns of gene expression in rat bone marrow stromal cells cultured on titanium alloy discs of different roughness. J Biomed Mater Res A. 2004 Sep 01; 70(3):391-401.
    View in: PubMed
    Score: 0.055
  17. A low-temperature biomimetic calcium phosphate surface enhances early implant fixation in a rat model. J Biomed Mater Res A. 2004 Jul 01; 70(1):66-73.
    View in: PubMed
    Score: 0.055
  18. The relative contribution of bone microarchitecture and matrix composition to implant fixation strength in rats. J Orthop Res. 2022 04; 40(4):862-870.
    View in: PubMed
    Score: 0.044
  19. Combined use of low-intensity pulsed ultrasound and rhBMP-2 to enhance bone formation in a rat model of critical size defect. J Orthop Trauma. 2014 Oct; 28(10):605-11.
    View in: PubMed
    Score: 0.028
  20. Dopamine receptors and the persistent neurovascular dysregulation induced by methamphetamine self-administration in rats. J Pharmacol Exp Ther. 2014 Nov; 351(2):432-9.
    View in: PubMed
    Score: 0.028
  21. Healing of rat femoral segmental defect with bone morphogenetic protein-2: a dose response study. J Musculoskelet Neuronal Interact. 2012 Mar; 12(1):28-37.
    View in: PubMed
    Score: 0.023
  22. Modulation of stromal cell-derived factor-1/CXC chemokine receptor 4 axis enhances rhBMP-2-induced ectopic bone formation. Tissue Eng Part A. 2012 Apr; 18(7-8):860-9.
    View in: PubMed
    Score: 0.023
  23. Low-intensity pulsed ultrasound (LIPUS) and cell-to-cell communication in bone marrow stromal cells. Ultrasonics. 2011 Jul; 51(5):639-44.
    View in: PubMed
    Score: 0.022
  24. Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model. Arthritis Rheum. 2010 Oct; 62(10):2995-3005.
    View in: PubMed
    Score: 0.021
  25. Temporal gene expression profiling during rat femoral marrow ablation-induced intramembranous bone regeneration. PLoS One. 2010 Oct 01; 5(10).
    View in: PubMed
    Score: 0.021
  26. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics. 2011 Apr; 51(3):281-8.
    View in: PubMed
    Score: 0.021
  27. Autologous stem cell regeneration in craniosynostosis. Bone. 2008 Feb; 42(2):332-40.
    View in: PubMed
    Score: 0.017
  28. The effect of enzymatically degradable IPN coatings on peri-implant bone formation and implant fixation. J Biomed Mater Res A. 2007 Jun 01; 81(3):720-7.
    View in: PubMed
    Score: 0.017
  29. Peri-implant bone formation and implant integration strength of peptide-modified p(AAM-co-EG/AAC) interpenetrating polymer network-coated titanium implants. J Biomed Mater Res A. 2007 Feb; 80(2):306-20.
    View in: PubMed
    Score: 0.016
  30. Modulation of VEGF expression in rat bone marrow stromal cells by GDF-5. Connect Tissue Res. 2007; 48(6):324-31.
    View in: PubMed
    Score: 0.016
  31. Biomimetic artificial ECMs stimulate bone regeneration. J Biomed Mater Res A. 2006 Dec 15; 79(4):815-26.
    View in: PubMed
    Score: 0.016
  32. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol. 2005 May; 31(5):703-8.
    View in: PubMed
    Score: 0.014
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.