Header Logo

Connection

Eduardo Rios to Patch-Clamp Techniques

This is a "connection" page, showing publications Eduardo Rios has written about Patch-Clamp Techniques.
Connection Strength

0.793
  1. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle. J Gen Physiol. 2011 Aug; 138(2):231-47.
    View in: PubMed
    Score: 0.095
  2. Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. J Gen Physiol. 2010 Sep; 136(3):325-38.
    View in: PubMed
    Score: 0.089
  3. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle. J Physiol. 2008 Oct 01; 586(19):4609-29.
    View in: PubMed
    Score: 0.077
  4. How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. J Gen Physiol. 2004 Sep; 124(3):239-58.
    View in: PubMed
    Score: 0.059
  5. A preferred amplitude of calcium sparks in skeletal muscle. Biophys J. 2001 Jan; 80(1):169-83.
    View in: PubMed
    Score: 0.046
  6. The spark and its ember: separately gated local components of Ca(2+) release in skeletal muscle. J Gen Physiol. 2000 Feb; 115(2):139-58.
    View in: PubMed
    Score: 0.043
  7. Spatially segregated control of Ca2+ release in developing skeletal muscle of mice. J Physiol. 1999 Dec 01; 521 Pt 2:483-95.
    View in: PubMed
    Score: 0.042
  8. Calcium release flux underlying Ca2+ sparks of frog skeletal muscle. J Gen Physiol. 1999 Jul; 114(1):31-48.
    View in: PubMed
    Score: 0.041
  9. Local calcium release in mammalian skeletal muscle. J Physiol. 1998 Oct 15; 512 ( Pt 2):377-84.
    View in: PubMed
    Score: 0.039
  10. Inactivation of gating currents of L-type calcium channels. Specific role of the alpha 2 delta subunit. J Gen Physiol. 1998 Jun; 111(6):807-23.
    View in: PubMed
    Score: 0.038
  11. Small event Ca2+ release: a probable precursor of Ca2+ sparks in frog skeletal muscle. J Physiol. 1997 Jul 01; 502 ( Pt 1):3-11.
    View in: PubMed
    Score: 0.036
  12. 'Quantal' calcium release operated by membrane voltage in frog skeletal muscle. J Physiol. 1997 Jun 01; 501 ( Pt 2):289-303.
    View in: PubMed
    Score: 0.036
  13. Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle. J Physiol. 1996 Jun 01; 493 ( Pt 2):317-39.
    View in: PubMed
    Score: 0.033
  14. Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration. J Physiol. 1996 Jun 01; 493 ( Pt 2):341-56.
    View in: PubMed
    Score: 0.033
  15. Ca sparks do not explain all ryanodine receptor-mediated SR Ca leak in mouse ventricular myocytes. Biophys J. 2010 May 19; 98(10):2111-20.
    View in: PubMed
    Score: 0.022
  16. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci U S A. 2007 Mar 20; 104(12):5235-40.
    View in: PubMed
    Score: 0.018
  17. The quantal nature of Ca2+ sparks and in situ operation of the ryanodine receptor array in cardiac cells. Proc Natl Acad Sci U S A. 2004 Mar 16; 101(11):3979-84.
    View in: PubMed
    Score: 0.014
  18. Unitary Ca2+ current through mammalian cardiac and amphibian skeletal muscle ryanodine receptor Channels under near-physiological ionic conditions. J Gen Physiol. 2003 Oct; 122(4):407-17.
    View in: PubMed
    Score: 0.014
  19. Ion-dependent inactivation of barium current through L-type calcium channels. J Gen Physiol. 1997 Apr; 109(4):449-61.
    View in: PubMed
    Score: 0.009
  20. Imaging elementary events of calcium release in skeletal muscle cells. Science. 1995 Sep 22; 269(5231):1723-6.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.