Header Logo

Connection

Eduardo Rios to Models, Biological

This is a "connection" page, showing publications Eduardo Rios has written about Models, Biological.
Connection Strength

1.126
  1. RyR1 expression and the cell boundary theorem. J Biol Chem. 2010 Aug 20; 285(34):le13; author reply le14.
    View in: PubMed
    Score: 0.312
  2. Life and death of a cardiac calcium spark. J Gen Physiol. 2013 Sep; 142(3):257-74.
    View in: PubMed
    Score: 0.096
  3. Using two dyes with the same fluorophore to monitor cellular calcium concentration in an extended range. PLoS One. 2013; 8(2):e55778.
    View in: PubMed
    Score: 0.093
  4. The cell boundary theorem: a simple law of the control of cytosolic calcium concentration. J Physiol Sci. 2010 Jan; 60(1):81-4.
    View in: PubMed
    Score: 0.074
  5. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol. 2009 Jul 01; 587(Pt 13):3101-11.
    View in: PubMed
    Score: 0.071
  6. Calcium-dependent inactivation terminates calcium release in skeletal muscle of amphibians. J Gen Physiol. 2008 Apr; 131(4):335-48.
    View in: PubMed
    Score: 0.066
  7. Control of dual isoforms of Ca2+ release channels in muscle. Biol Res. 2004; 37(4):583-91.
    View in: PubMed
    Score: 0.049
  8. Differential effects of voltage-dependent inactivation and local anesthetics on kinetic phases of Ca2+ release in frog skeletal muscle. Biophys J. 2003 Jul; 85(1):245-54.
    View in: PubMed
    Score: 0.048
  9. A preferred amplitude of calcium sparks in skeletal muscle. Biophys J. 2001 Jan; 80(1):169-83.
    View in: PubMed
    Score: 0.040
  10. Calcium release flux underlying Ca2+ sparks of frog skeletal muscle. J Gen Physiol. 1999 Jul; 114(1):31-48.
    View in: PubMed
    Score: 0.036
  11. Inactivation of gating currents of L-type calcium channels. Specific role of the alpha 2 delta subunit. J Gen Physiol. 1998 Jun; 111(6):807-23.
    View in: PubMed
    Score: 0.033
  12. Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle. J Gen Physiol. 1996 Jan; 107(1):1-18.
    View in: PubMed
    Score: 0.028
  13. Properties and roles of an intramembranous charge mobilized at high voltages in frog skeletal muscle. J Physiol. 1995 Jul 15; 486 ( Pt 2):385-400.
    View in: PubMed
    Score: 0.027
  14. A damped oscillation in the intramembranous charge movement and calcium release flux of frog skeletal muscle fibers. J Gen Physiol. 1994 Sep; 104(3):449-76.
    View in: PubMed
    Score: 0.026
  15. An allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle. J Gen Physiol. 1993 Sep; 102(3):449-81.
    View in: PubMed
    Score: 0.024
  16. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage dependence of gating. Biophys J. 1991 Oct; 60(4):890-901.
    View in: PubMed
    Score: 0.021
  17. Interfering with calcium release suppresses I gamma, the "hump" component of intramembranous charge movement in skeletal muscle. J Gen Physiol. 1991 May; 97(5):845-84.
    View in: PubMed
    Score: 0.020
  18. The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J Muscle Res Cell Motil. 1991 Apr; 12(2):127-35.
    View in: PubMed
    Score: 0.020
  19. Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J Biol Chem. 2010 Jan 01; 285(1):705-12.
    View in: PubMed
    Score: 0.018
  20. Unitary Ca2+ current through mammalian cardiac and amphibian skeletal muscle ryanodine receptor Channels under near-physiological ionic conditions. J Gen Physiol. 2003 Oct; 122(4):407-17.
    View in: PubMed
    Score: 0.012
  21. Calcium sparks: release packets of uncertain origin and fundamental role. J Gen Physiol. 1999 Mar; 113(3):377-84.
    View in: PubMed
    Score: 0.009
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.