Header Logo

Connection

Eduardo Rios to Mice

This is a "connection" page, showing publications Eduardo Rios has written about Mice.
Connection Strength

1.213
  1. A novel method for determining murine skeletal muscle fiber type using autofluorescence lifetimes. J Gen Physiol. 2022 09 05; 154(9).
    View in: PubMed
    Score: 0.147
  2. Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes. Elife. 2020 05 04; 9.
    View in: PubMed
    Score: 0.126
  3. Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle. Proc Natl Acad Sci U S A. 2017 01 24; 114(4):E638-E647.
    View in: PubMed
    Score: 0.100
  4. Altered Ca2+ concentration, permeability and buffering in the myofibre Ca2+ store of a mouse model of malignant hyperthermia. J Physiol. 2013 Sep 15; 591(18):4439-57.
    View in: PubMed
    Score: 0.079
  5. Confocal imaging of transmembrane voltage by SEER of di-8-ANEPPS. J Gen Physiol. 2013 Mar; 141(3):371-87.
    View in: PubMed
    Score: 0.077
  6. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle. J Physiol. 2013 Jan 15; 591(2):423-42.
    View in: PubMed
    Score: 0.075
  7. Synthetic localized calcium transients directly probe signalling mechanisms in skeletal muscle. J Physiol. 2012 Mar 15; 590(6):1389-411.
    View in: PubMed
    Score: 0.071
  8. D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle. J Gen Physiol. 2011 Aug; 138(2):211-29.
    View in: PubMed
    Score: 0.069
  9. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle. J Gen Physiol. 2011 Aug; 138(2):231-47.
    View in: PubMed
    Score: 0.069
  10. Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. J Gen Physiol. 2010 Sep; 136(3):325-38.
    View in: PubMed
    Score: 0.064
  11. Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle. J Physiol. 2009 Jul 01; 587(Pt 13):3101-11.
    View in: PubMed
    Score: 0.059
  12. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle. J Physiol. 2008 Oct 01; 586(19):4609-29.
    View in: PubMed
    Score: 0.056
  13. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol. 2006 Feb; 290(2):C539-53.
    View in: PubMed
    Score: 0.046
  14. Spatially segregated control of Ca2+ release in developing skeletal muscle of mice. J Physiol. 1999 Dec 01; 521 Pt 2:483-95.
    View in: PubMed
    Score: 0.031
  15. The voltage sensor of excitation-contraction coupling in mammals: Inactivation and interaction with Ca2. J Gen Physiol. 2017 Nov 06; 149(11):1041-1058.
    View in: PubMed
    Score: 0.026
  16. Characterization of Post-Translational Modifications to Calsequestrins of Cardiac and Skeletal Muscle. Int J Mol Sci. 2016 Sep 13; 17(9).
    View in: PubMed
    Score: 0.025
  17. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J Biol Chem. 2011 Sep 16; 286(37):32436-43.
    View in: PubMed
    Score: 0.017
  18. The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J Muscle Res Cell Motil. 1991 Apr; 12(2):127-35.
    View in: PubMed
    Score: 0.017
  19. Ca sparks do not explain all ryanodine receptor-mediated SR Ca leak in mouse ventricular myocytes. Biophys J. 2010 May 19; 98(10):2111-20.
    View in: PubMed
    Score: 0.016
  20. Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J Biol Chem. 2010 Jan 01; 285(1):705-12.
    View in: PubMed
    Score: 0.015
  21. Voltage-gated proton channels maintain pH in human neutrophils during phagocytosis. Proc Natl Acad Sci U S A. 2009 Oct 20; 106(42):18022-7.
    View in: PubMed
    Score: 0.015
  22. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci U S A. 2007 Mar 20; 104(12):5235-40.
    View in: PubMed
    Score: 0.013
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.