Header Logo

Connection

Lothar Blatter to Rabbits

This is a "connection" page, showing publications Lothar Blatter has written about Rabbits.
Connection Strength

4.485
  1. Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes. Biomolecules. 2024 Jan 24; 14(2).
    View in: PubMed
    Score: 0.217
  2. Increased Risk for Atrial Alternans in Rabbit Heart Failure: The Role of Ca2+/Calmodulin-Dependent Kinase II and Inositol-1,4,5-trisphosphate Signaling. Biomolecules. 2023 Dec 30; 14(1).
    View in: PubMed
    Score: 0.216
  3. Calcium- and voltage-driven atrial alternans: Insight from [Ca]i and Vm asynchrony. Physiol Rep. 2023 05; 11(10):e15703.
    View in: PubMed
    Score: 0.207
  4. The 'Reverse FDUF' Mechanism of Atrial Excitation-Contraction Coupling Sustains Calcium Alternans-A Hypothesis. Biomolecules. 2022 12 20; 13(1).
    View in: PubMed
    Score: 0.201
  5. Activation of small conductance Ca2+ -activated K+ channels suppresses Ca2+ transient and action potential alternans in ventricular myocytes. J Physiol. 2023 01; 601(1):51-67.
    View in: PubMed
    Score: 0.201
  6. Mechanism of carvedilol induced action potential and calcium alternans. Channels (Austin). 2022 12; 16(1):97-112.
    View in: PubMed
    Score: 0.201
  7. Mitochondrial calcium uniporter complex activation protects against calcium alternans in atrial myocytes. Am J Physiol Heart Circ Physiol. 2020 10 01; 319(4):H873-H881.
    View in: PubMed
    Score: 0.172
  8. Effect of carvedilol on atrial excitation-contraction coupling, Ca2+ release, and arrhythmogenicity. Am J Physiol Heart Circ Physiol. 2020 05 01; 318(5):H1245-H1255.
    View in: PubMed
    Score: 0.167
  9. Action potential shortening rescues atrial calcium alternans. J Physiol. 2019 02; 597(3):723-740.
    View in: PubMed
    Score: 0.152
  10. Membrane potential determines calcium alternans through modulation of SR Ca2+ load and L-type Ca2+ current. J Mol Cell Cardiol. 2017 04; 105:49-58.
    View in: PubMed
    Score: 0.135
  11. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes. J Physiol. 2017 06 15; 595(12):3835-3845.
    View in: PubMed
    Score: 0.134
  12. Dyssynchronous calcium removal in heart failure-induced atrial remodeling. Am J Physiol Heart Circ Physiol. 2016 12 01; 311(6):H1352-H1359.
    View in: PubMed
    Score: 0.131
  13. Ca(2+)-activated chloride channel activity during Ca(2+) alternans in ventricular myocytes. Channels (Austin). 2016 Nov; 10(6):507-17.
    View in: PubMed
    Score: 0.129
  14. Calcium-activated chloride current determines action potential morphology during calcium alternans in atrial myocytes. J Physiol. 2016 Feb 01; 594(3):699-714.
    View in: PubMed
    Score: 0.125
  15. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels (Austin). 2015; 9(3):129-38.
    View in: PubMed
    Score: 0.116
  16. Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol. 2015 Mar 15; 593(6):1459-77.
    View in: PubMed
    Score: 0.116
  17. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans. Circ Res. 2015 Feb 27; 116(5):846-56.
    View in: PubMed
    Score: 0.116
  18. NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol. 2014 Mar; 306(6):H856-66.
    View in: PubMed
    Score: 0.109
  19. Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging. PLoS One. 2013; 8(4):e61525.
    View in: PubMed
    Score: 0.103
  20. Mitochondria-mediated cardioprotection by trimetazidine in rabbit heart failure. J Mol Cell Cardiol. 2013 Jun; 59:41-54.
    View in: PubMed
    Score: 0.102
  21. ?-Adrenergic stimulation increases the intra-sarcoplasmic reticulum Ca2+ threshold for Ca2+ wave generation. J Physiol. 2012 Dec 01; 590(23):6093-108.
    View in: PubMed
    Score: 0.099
  22. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes. J Physiol. 2012 Dec 01; 590(23):6037-45.
    View in: PubMed
    Score: 0.099
  23. Refractoriness of sarcoplasmic reticulum Ca2+ release determines Ca2+ alternans in atrial myocytes. Am J Physiol Heart Circ Physiol. 2012 Jun 01; 302(11):H2310-20.
    View in: PubMed
    Score: 0.096
  24. A novel method for spatially complex diffraction-limited photoactivation and photobleaching in living cells. J Physiol. 2012 Mar 01; 590(5):1093-100.
    View in: PubMed
    Score: 0.094
  25. Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. Am J Physiol Heart Circ Physiol. 2012 Feb 15; 302(4):H953-63.
    View in: PubMed
    Score: 0.094
  26. Ca?+ spark-dependent and -independent sarcoplasmic reticulum Ca?+ leak in normal and failing rabbit ventricular myocytes. J Physiol. 2010 Dec 01; 588(Pt 23):4743-57.
    View in: PubMed
    Score: 0.087
  27. Activation of NFATc1 is directly mediated by IP3 in adult cardiac myocytes. Am J Physiol Heart Circ Physiol. 2010 Nov; 299(5):H1701-7.
    View in: PubMed
    Score: 0.086
  28. Isoform- and tissue-specific regulation of the Ca(2+)-sensitive transcription factor NFAT in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol. 2010 Jun; 298(6):H2001-9.
    View in: PubMed
    Score: 0.083
  29. Tricyclic antidepressant amitriptyline alters sarcoplasmic reticulum calcium handling in ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008 Nov; 295(5):H2008-16.
    View in: PubMed
    Score: 0.075
  30. Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res. 2008 Oct 10; 103(8):e105-15.
    View in: PubMed
    Score: 0.075
  31. IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008 Feb; 294(2):H596-604.
    View in: PubMed
    Score: 0.071
  32. Differential modulation of cardiac and skeletal muscle ryanodine receptors by NADH. FEBS Lett. 2003 Jul 17; 547(1-3):32-6.
    View in: PubMed
    Score: 0.052
  33. L-type Ca2+ channel recovery from inactivation in rabbit atrial myocytes. Physiol Rep. 2022 03; 10(5):e15222.
    View in: PubMed
    Score: 0.048
  34. Cell volume measurements by fluorescence confocal microscopy: theoretical and practical aspects. Methods Enzymol. 1999; 307:274-95.
    View in: PubMed
    Score: 0.038
  35. The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Ca2+ leak in ventricular myocytes. J Mol Cell Cardiol. 2017 03; 104:9-16.
    View in: PubMed
    Score: 0.033
  36. Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc Res. 2015 May 01; 106(2):237-48.
    View in: PubMed
    Score: 0.029
  37. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol Heart Circ Physiol. 2014 Sep 01; 307(5):H689-700.
    View in: PubMed
    Score: 0.028
  38. Using two dyes with the same fluorophore to monitor cellular calcium concentration in an extended range. PLoS One. 2013; 8(2):e55778.
    View in: PubMed
    Score: 0.025
  39. Inorganic polyphosphate--an unusual suspect of the mitochondrial permeability transition mystery. Channels (Austin). 2012 Nov-Dec; 6(6):463-7.
    View in: PubMed
    Score: 0.025
  40. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. J Gen Physiol. 2012 May; 139(5):321-31.
    View in: PubMed
    Score: 0.024
  41. Regulation of sarcoplasmic reticulum Ca?? leak by cytosolic Ca?? in rabbit ventricular myocytes. J Physiol. 2011 Dec 15; 589(Pt 24):6039-50.
    View in: PubMed
    Score: 0.023
  42. Single ryanodine receptor channel basis of caffeine's action on Ca2+ sparks. Biophys J. 2011 Feb 16; 100(4):931-8.
    View in: PubMed
    Score: 0.022
  43. Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release. Circ Res. 2011 Apr 01; 108(7):847-56.
    View in: PubMed
    Score: 0.022
  44. Changes in intra-luminal calcium during spontaneous calcium waves following sensitization of ryanodine receptor channels. Channels (Austin). 2010 Mar-Apr; 4(2):87-92.
    View in: PubMed
    Score: 0.021
  45. Alteration of sarcoplasmic reticulum Ca2+ release termination by ryanodine receptor sensitization and in heart failure. J Physiol. 2009 Nov 01; 587(Pt 21):5197-209.
    View in: PubMed
    Score: 0.020
  46. Trifluoperazine: a rynodine receptor agonist. Pflugers Arch. 2009 Aug; 458(4):643-51.
    View in: PubMed
    Score: 0.019
  47. Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res. 2006 Sep 29; 99(7):740-8.
    View in: PubMed
    Score: 0.016
  48. Confocal imaging of CICR events from isolated and immobilized SR vesicles. Cell Calcium. 2005 Nov; 38(5):497-505.
    View in: PubMed
    Score: 0.015
  49. Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am J Physiol. 1997 Feb; 272(2 Pt 2):H657-68.
    View in: PubMed
    Score: 0.008
  50. Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys J. 1996 Mar; 70(3):1494-504.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.