Header Logo

Connection

Kern Singh to Male

This is a "connection" page, showing publications Kern Singh has written about Male.
Connection Strength

6.138
  1. Preoperative predictors of prolonged hospitalization in patients undergoing lateral lumbar interbody fusion. Acta Neurochir (Wien). 2023 09; 165(9):2615-2624.
    View in: PubMed
    Score: 0.071
  2. Influence of Preoperative Depressive Burden on Achieving a Minimal Clinically Important Difference Following Lumbar Decompression. Clin Spine Surg. 2022 11 01; 35(9):E693-E697.
    View in: PubMed
    Score: 0.066
  3. Single-level TLIF Versus LLIF at L4-5: A Comparison of Patient-reported Outcomes and Recovery Ratios. J Am Acad Orthop Surg. 2022 Feb 15; 30(4):e495-e505.
    View in: PubMed
    Score: 0.065
  4. Influence of Self-Identified Gender on Clinical Outcomes and Postoperative Patient Satisfaction After Lumbar Decompression: Cohort-Matched Analysis. World Neurosurg. 2022 04; 160:e616-e627.
    View in: PubMed
    Score: 0.064
  5. Impact of Prolonged Duration of Symptoms on Mental Health in Anterior Cervical Disectomy and Fusion Patients. J Am Acad Orthop Surg. 2022 Jan 01; 30(1):e74-e82.
    View in: PubMed
    Score: 0.064
  6. Workers' Compensation Association With Clinical Outcomes After Anterior Cervical Diskectomy and Fusion. Neurosurgery. 2022 03 01; 90(3):322-328.
    View in: PubMed
    Score: 0.064
  7. Time to Complete Legacy Patient-Reported Outcome Measures in Patients with Lumbar Decompression. J Am Acad Orthop Surg. 2021 Dec 01; 29(23):e1208-e1216.
    View in: PubMed
    Score: 0.064
  8. Preoperative Physical Function Association With Mental Health Improvement After Anterior Cervical Discectomy and Fusion. Clin Spine Surg. 2021 12 01; 34(10):E559-E565.
    View in: PubMed
    Score: 0.064
  9. Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion versus Anterior Lumbar Interbody Fusion with Posterior Instrumentation at L5/S1. World Neurosurg. 2022 01; 157:e111-e122.
    View in: PubMed
    Score: 0.063
  10. The Effect of the Severity of Preoperative Back Pain on Patient-Reported Outcomes, Recovery Ratios, and Patient Satisfaction Following Minimally Invasive Transforaminal Lumbar Interbody Fusion (MIS-TLIF). World Neurosurg. 2021 12; 156:e254-e265.
    View in: PubMed
    Score: 0.063
  11. Validation of VR-12 Physical Function in Minimally Invasive Lumbar Discectomy. World Neurosurg. 2021 11; 155:e362-e368.
    View in: PubMed
    Score: 0.062
  12. Multimodal Analgesic Management for Lumbar Decompression Surgery in the Ambulatory Setting: Clinical Case Series and Review of the Literature. World Neurosurg. 2021 10; 154:e656-e664.
    View in: PubMed
    Score: 0.062
  13. Diabetes Mellitus Does Not Impact Achievement of a Minimum Clinically Important Difference Following Anterior Cervical Discectomy and Fusion. World Neurosurg. 2021 10; 154:e520-e528.
    View in: PubMed
    Score: 0.062
  14. Achievement of a Minimum Clinically Important Difference for Back Disability Is a Suitable Predictor of Patient Satisfaction Among Lumbar Fusion Patients. World Neurosurg. 2021 08; 152:e94-e100.
    View in: PubMed
    Score: 0.061
  15. The Minimum Clinically Important Difference for Patient Health Questionnaire-9 in Minimally Invasive Transforaminal Interbody Fusion. Spine (Phila Pa 1976). 2021 May 01; 46(9):603-609.
    View in: PubMed
    Score: 0.061
  16. A Validation of Patient Health Questionnaire-9 for Cervical Spine Surgery. Spine (Phila Pa 1976). 2020 Dec 01; 45(23):1668-1675.
    View in: PubMed
    Score: 0.059
  17. Validation of PROMIS Physical Function in MIS TLIF: 2-Year Follow-up. Spine (Phila Pa 1976). 2020 Nov 15; 45(22):E1516-E1522.
    View in: PubMed
    Score: 0.059
  18. Patient Perceptions of Physician Ownership in Spine Care. Clin Spine Surg. 2020 10; 33(8):E369-E375.
    View in: PubMed
    Score: 0.059
  19. Postoperative Pain, Narcotics Consumption, and Patient-Reported Outcomes Based on PROMIS Physical Function Following a Single-Level Anterior Cervical Discectomy and Fusion. Spine (Phila Pa 1976). 2020 Sep 01; 45(17):E1091-E1096.
    View in: PubMed
    Score: 0.058
  20. PROMIS PF in the Evaluation of Postoperative Outcomes in Workers' Compensation Patients Following Anterior Cervical Discectomy and Fusion. Clin Spine Surg. 2020 08; 33(7):E312-E316.
    View in: PubMed
    Score: 0.058
  21. Diabetes Does Not Increase Complications, Length of Stay, or Hospital Costs After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2020 08; 33(7):E307-E311.
    View in: PubMed
    Score: 0.058
  22. The Effect of Preoperative Symptom Duration on Postoperative Outcomes After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2020 07; 33(6):E263-E268.
    View in: PubMed
    Score: 0.058
  23. The Impact of Comorbidity Burden on Postoperative PROMIS Physical Function Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2020 07; 33(6):E294-E298.
    View in: PubMed
    Score: 0.058
  24. Validity of Patient Health Questionnaire-9 in Minimally Invasive Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2020 Jun 01; 45(11):E663-E669.
    View in: PubMed
    Score: 0.057
  25. Complications Following Minimally Invasive Transforaminal Lumbar Interbody Fusion: Incidence, Independent Risk Factors, and Clinical Impact. Clin Spine Surg. 2020 06; 33(5):E236-E240.
    View in: PubMed
    Score: 0.057
  26. All Disclosure is Good Disclosure: Patient Awareness of the Sunshine Act and Perceptions of Surgeon-Industry Relationships. Clin Spine Surg. 2020 04; 33(3):E96-E100.
    View in: PubMed
    Score: 0.057
  27. The Influence of Preoperative Mental Health on PROMIS Physical Function Outcomes Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2020 Feb 15; 45(4):E236-E243.
    View in: PubMed
    Score: 0.056
  28. Postoperative Outcomes Based on American Society of Anesthesiologists Score After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2020 02; 33(1):E40-E42.
    View in: PubMed
    Score: 0.056
  29. Evaluating the Concurrent Validity of PROMIS Physical Function in Anterior Cervical Discectomy and Fusion. Clin Spine Surg. 2019 12; 32(10):449-453.
    View in: PubMed
    Score: 0.055
  30. PHQ-9 Score Predicts Postoperative Outcomes Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2019 12; 32(10):444-448.
    View in: PubMed
    Score: 0.055
  31. The Effect of Tobacco Use on Postoperative Pain Following Anterior Cervical Discectomy and Fusion. Clin Spine Surg. 2019 12; 32(10):E440-E443.
    View in: PubMed
    Score: 0.055
  32. Sex Differences on Postoperative Pain and Disability Following Minimally Invasive Lumbar Discectomy. Clin Spine Surg. 2019 12; 32(10):E444-E448.
    View in: PubMed
    Score: 0.055
  33. Patient Activation is Not Associated With Postoperative Outcomes Following Anterior Cervical Discectomy and Fusion. Clin Spine Surg. 2019 12; 32(10):E453-E456.
    View in: PubMed
    Score: 0.055
  34. The Use of Patient-Reported Outcome Measurement Information System Physical Function to Predict Outcomes Based on Body Mass Index Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2019 Dec 01; 44(23):E1388-E1395.
    View in: PubMed
    Score: 0.055
  35. Patient Perceptions of Iliac Crest Bone Grafting in Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2019 12; 32(10):430-434.
    View in: PubMed
    Score: 0.055
  36. Improvements in Grip and Pinch Strength and Patient-reported Outcomes After Anterior Cervical Discectomy and Fusion. Clin Spine Surg. 2019 11; 32(9):403-408.
    View in: PubMed
    Score: 0.055
  37. Safety and Efficacy of Revision Minimally Invasive Lumbar Decompression in the Ambulatory Setting. Spine (Phila Pa 1976). 2019 Apr 15; 44(8):E494-E499.
    View in: PubMed
    Score: 0.053
  38. Impact of the Number of Levels on Adverse Events and Length of Stay Following Posterior Lumbar Fusion Procedures. Clin Spine Surg. 2019 04; 32(3):120-124.
    View in: PubMed
    Score: 0.053
  39. PROMIS Physical Function Score Strongly Correlates With Legacy Outcome Measures in Minimally Invasive Lumbar Microdiscectomy. Spine (Phila Pa 1976). 2019 03 15; 44(6):442-446.
    View in: PubMed
    Score: 0.053
  40. The Impact of Comorbidity Burden on Complications, Length of Stay, and Direct Hospital Costs After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2019 03 01; 44(5):363-368.
    View in: PubMed
    Score: 0.053
  41. Does Gender Influence Postoperative Outcomes in Minimally Invasive Transforaminal Lumbar Interbody Fusion? Clin Spine Surg. 2019 03; 32(2):E107-E111.
    View in: PubMed
    Score: 0.053
  42. Risk Factors for a Long Hospital Stay Following Minimally Invasive Lumbar Discectomy. Clin Spine Surg. 2019 02; 32(1):E56-E59.
    View in: PubMed
    Score: 0.052
  43. The Effect of Preoperative Symptom Duration on Postoperative Outcomes After a Tubular Lumbar Microdiscectomy. Clin Spine Surg. 2019 02; 32(1):E27-E30.
    View in: PubMed
    Score: 0.052
  44. The Effect of Preoperative Medications on Length of Stay, Inpatient Pain, and Narcotics Consumption After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2019 02; 32(1):E37-E42.
    View in: PubMed
    Score: 0.052
  45. Comparison of Postoperative Outcomes Between Primary MIS TLIF and MIS TLIF With Revision Decompression. Spine (Phila Pa 1976). 2019 Jan 15; 44(2):150-156.
    View in: PubMed
    Score: 0.052
  46. Impact of local steroid application in a minimally invasive transforaminal lumbar interbody fusion: results of a prospective, randomized, single-blind trial. J Neurosurg Spine. 2018 11 09; 30(2):222-227.
    View in: PubMed
    Score: 0.051
  47. Iliac Crest Bone Graft for Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Prospective Analysis of Inpatient Pain, Narcotics Consumption, and Costs. Spine (Phila Pa 1976). 2018 09 15; 43(18):1307-1312.
    View in: PubMed
    Score: 0.051
  48. Sex Differences for Anterior Cervical Fusion: Complications and Length of Stay. Spine (Phila Pa 1976). 2018 08 01; 43(15):1025-1030.
    View in: PubMed
    Score: 0.051
  49. Does Day of Surgery Affect Hospital Length of Stay and Charges Following Minimally Invasive Transforaminal Lumbar Interbody Fusion? Clin Spine Surg. 2018 06; 31(5):E291-E295.
    View in: PubMed
    Score: 0.050
  50. Impact of local steroid application on dysphagia following an anterior cervical discectomy and fusion: results of a prospective, randomized single-blind trial. J Neurosurg Spine. 2018 07; 29(1):10-17.
    View in: PubMed
    Score: 0.050
  51. Validity of PROMIS in minimally invasive transforaminal lumbar interbody fusion: a preliminary evaluation. J Neurosurg Spine. 2018 07; 29(1):28-33.
    View in: PubMed
    Score: 0.049
  52. Patient Perceptions of Minimally Invasive Versus Open Spine Surgery. Clin Spine Surg. 2018 04; 31(3):E184-E192.
    View in: PubMed
    Score: 0.049
  53. Variation in Spine Surgeon Selection Criteria Between Neurosurgery and Orthopedic Surgery Patients. Clin Spine Surg. 2018 03; 31(2):E127-E132.
    View in: PubMed
    Score: 0.049
  54. Is Body Mass Index a Risk Factor for Revision Procedures After Minimally Invasive Transforaminal Lumbar Interbody Fusion? Clin Spine Surg. 2018 02; 31(1):E85-E91.
    View in: PubMed
    Score: 0.049
  55. Risk Factors Associated With Failure to Reach Minimal Clinically Important Difference in Patient-reported Outcomes Following Minimally Invasive Transforaminal Lumbar Interbody Fusion for Spondylolisthesis. Clin Spine Surg. 2018 02; 31(1):E92-E97.
    View in: PubMed
    Score: 0.049
  56. Radiographic Analysis of Psoas Morphology and its Association With Neurovascular Structures at L4-5 With Reference to Lateral Approaches. Spine (Phila Pa 1976). 2017 Dec 15; 42(24):E1386-E1392.
    View in: PubMed
    Score: 0.048
  57. Preoperative Mental Health is not Predictive of Patient-reported Outcomes Following a Minimally Invasive Lumbar Discectomy. Clin Spine Surg. 2017 Dec; 30(10):E1388-E1391.
    View in: PubMed
    Score: 0.048
  58. The Utility of Routinely Obtaining Postoperative Laboratory Studies Following a Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2017 Dec; 30(10):E1405-E1410.
    View in: PubMed
    Score: 0.048
  59. Impact of body mass index on surgical outcomes, narcotics consumption, and hospital costs following anterior cervical discectomy and fusion. J Neurosurg Spine. 2018 02; 28(2):160-166.
    View in: PubMed
    Score: 0.048
  60. Narcotic Consumption Following Anterior and Lateral Lumbar Interbody Fusion Procedures. Clin Spine Surg. 2017 Nov; 30(9):E1190-E1200.
    View in: PubMed
    Score: 0.048
  61. Comparison of Surgical Outcomes, Narcotics Utilization, and Costs After an Anterior Cervical Discectomy and Fusion: Stand-alone Cage Versus Anterior Plating. Clin Spine Surg. 2017 Nov; 30(9):E1201-E1205.
    View in: PubMed
    Score: 0.048
  62. Multimodal Analgesia Versus Intravenous Patient-Controlled Analgesia for Minimally Invasive Transforaminal Lumbar Interbody Fusion Procedures. Spine (Phila Pa 1976). 2017 Aug 01; 42(15):1145-1150.
    View in: PubMed
    Score: 0.047
  63. Improvements in Neck and Arm Pain Following an Anterior Cervical Discectomy and Fusion. Spine (Phila Pa 1976). 2017 Jul 15; 42(14):E825-E832.
    View in: PubMed
    Score: 0.047
  64. Spinal Surgeon Variation in Single-Level Cervical Fusion Procedures: A Cost and Hospital Resource Utilization Analysis. Spine (Phila Pa 1976). 2017 Jul 01; 42(13):1031-1038.
    View in: PubMed
    Score: 0.047
  65. Neuroforaminal Bone Growth Following Minimally Invasive Transforaminal Lumbar Interbody Fusion With BMP: A Computed Tomographic Analysis. Clin Spine Surg. 2017 Jul; 30(6):E754-E758.
    View in: PubMed
    Score: 0.047
  66. Effect of Surgeon Volume on Complications, Length of Stay, and Costs Following Anterior Cervical Fusion. Spine (Phila Pa 1976). 2017 Mar 15; 42(6):394-399.
    View in: PubMed
    Score: 0.046
  67. Effect of Surgery Start Time on Day of Discharge in Anterior Cervical Discectomy and Fusion Patients. Spine (Phila Pa 1976). 2016 Dec 15; 41(24):1939-1944.
    View in: PubMed
    Score: 0.045
  68. Malnutrition Predicts Infectious and Wound Complications Following Posterior Lumbar Spinal Fusion. Spine (Phila Pa 1976). 2016 Nov 01; 41(21):1693-1699.
    View in: PubMed
    Score: 0.045
  69. Anterior Cervical Discectomy and Fusion: The Surgical Learning Curve. Spine (Phila Pa 1976). 2016 Oct 15; 41(20):1580-1585.
    View in: PubMed
    Score: 0.045
  70. Preoperative mental health status may not be predictive of improvements in patient-reported outcomes following an anterior cervical discectomy and fusion. J Neurosurg Spine. 2017 Feb; 26(2):177-182.
    View in: PubMed
    Score: 0.044
  71. Patient knowledge regarding radiation exposure from spinal imaging. Spine J. 2017 03; 17(3):305-312.
    View in: PubMed
    Score: 0.044
  72. Effects of Intraoperative Anesthetic Medications on Postoperative Urinary Retention After Single-Level Lumbar Fusion. Spine (Phila Pa 1976). 2016 Sep 15; 41(18):1441-1446.
    View in: PubMed
    Score: 0.044
  73. Spine Surgeon Selection Criteria: Factors Influencing Patient Choice. Spine (Phila Pa 1976). 2016 Jul 01; 41(13):E814-E819.
    View in: PubMed
    Score: 0.044
  74. Functional Capacity Evaluation Following Spinal Fusion Surgery. Spine (Phila Pa 1976). 2016 Jul 01; 41(13):1104-1110.
    View in: PubMed
    Score: 0.044
  75. Multimodal Versus Patient-Controlled Analgesia After an Anterior Cervical Decompression and Fusion. Spine (Phila Pa 1976). 2016 Jun; 41(12):994-998.
    View in: PubMed
    Score: 0.043
  76. Incidence and Risk Factors for Pneumonia After Posterior Lumbar Fusion Procedures: An ACS-NSQIP Study. Spine (Phila Pa 1976). 2016 Jun; 41(12):1058-1063.
    View in: PubMed
    Score: 0.043
  77. Does Greater Body Mass Index Increase the Risk for Revision Procedures Following a Single-Level Minimally Invasive Lumbar Discectomy? Spine (Phila Pa 1976). 2016 May; 41(9):816-21.
    View in: PubMed
    Score: 0.043
  78. Incidence and risk factors for pneumonia following anterior cervical decompression and fusion procedures: an ACS-NSQIP study. Spine J. 2016 Mar; 16(3):335-42.
    View in: PubMed
    Score: 0.042
  79. Urinary Tract Infection Following Posterior Lumbar Fusion Procedures: An American College of Surgeons National Surgical Quality Improvement Program Study. Spine (Phila Pa 1976). 2015 Nov; 40(22):1785-91.
    View in: PubMed
    Score: 0.042
  80. Impact of Economic Incentives on Patient Selection of Surgical Facility: Commentary on an article by James C. Robinson, PhD, et al.: "Consumer Choice Between Hospital-Based and Freestanding Facilities for Arthroscopy. Impact on Prices, Spending, and Surgical Complications". J Bone Joint Surg Am. 2015 Sep 16; 97(18):e63.
    View in: PubMed
    Score: 0.041
  81. Primary Versus Revision Single-level Minimally Invasive Lumbar Discectomy: Analysis of Clinical Outcomes and Narcotic Utilization. Spine (Phila Pa 1976). 2015 Sep 15; 40(18):E1025-30.
    View in: PubMed
    Score: 0.041
  82. Preoperative narcotic utilization: accuracy of patient self-reporting and its association with postoperative narcotic consumption. J Neurosurg Spine. 2016 Jan; 24(1):206-14.
    View in: PubMed
    Score: 0.041
  83. Minimally invasive lumbar decompression-the surgical learning curve. Spine J. 2016 08; 16(8):909-16.
    View in: PubMed
    Score: 0.041
  84. The Impact of Worker's Compensation Claims on Outcomes and Costs Following an Anterior Cervical Discectomy and Fusion. Spine (Phila Pa 1976). 2015 Jun 15; 40(12):948-53.
    View in: PubMed
    Score: 0.041
  85. The utility of obtaining routine hematological laboratory values following an anterior cervical diskectomy and fusion. Spine (Phila Pa 1976). 2014 Sep 15; 39(20):E1228-32.
    View in: PubMed
    Score: 0.039
  86. Cost analysis of incidental durotomy in spine surgery. Spine (Phila Pa 1976). 2014 Aug 01; 39(17):E1042-51.
    View in: PubMed
    Score: 0.038
  87. Body mass index as a predictor of complications and mortality after lumbar spine surgery. Spine (Phila Pa 1976). 2014 May 01; 39(10):798-804.
    View in: PubMed
    Score: 0.038
  88. Sentinel events in cervical spine surgery. Spine (Phila Pa 1976). 2014 Apr 20; 39(9):715-20.
    View in: PubMed
    Score: 0.038
  89. Incidence, risk factors, and outcomes of postoperative airway management after cervical spine surgery. Spine (Phila Pa 1976). 2014 Apr 20; 39(9):E557-63.
    View in: PubMed
    Score: 0.038
  90. Cerebral vascular accidents after lumbar spine fusion. Spine (Phila Pa 1976). 2014 Apr 15; 39(8):673-7.
    View in: PubMed
    Score: 0.038
  91. Comparison of revision surgeries for one- to two-level cervical TDR and ACDF from 2002 to 2011. Spine J. 2014 Dec 01; 14(12):2841-6.
    View in: PubMed
    Score: 0.037
  92. Perioperative characteristics and outcomes of patients undergoing anterior cervical fusion in July: analysis of the "July effect". Spine (Phila Pa 1976). 2014 Apr 01; 39(7):612-7.
    View in: PubMed
    Score: 0.037
  93. Epidemiological trends in the utilization of bone morphogenetic protein in spinal fusions from 2002 to 2011. Spine (Phila Pa 1976). 2014 Mar 15; 39(6):491-6.
    View in: PubMed
    Score: 0.037
  94. Current trends in demographics, practice, and in-hospital outcomes in cervical spine surgery: a national database analysis between 2002 and 2011. Spine (Phila Pa 1976). 2014 Mar 15; 39(6):476-81.
    View in: PubMed
    Score: 0.037
  95. Complications after lumbar spine surgery between teaching and nonteaching hospitals. Spine (Phila Pa 1976). 2014 Mar 01; 39(5):417-23.
    View in: PubMed
    Score: 0.037
  96. Prospective, randomized, controlled trial of silicate-substituted calcium phosphate versus rhBMP-2 in a minimally invasive transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2014 Feb 01; 39(3):185-91.
    View in: PubMed
    Score: 0.037
  97. Incidence, outcomes, and mortality of reintubation after anterior cervical fusion. Spine (Phila Pa 1976). 2014 Jan 15; 39(2):134-9.
    View in: PubMed
    Score: 0.037
  98. In response. Spine (Phila Pa 1976). 2014 Jan 01; 39(1):112.
    View in: PubMed
    Score: 0.037
  99. Comparison between cervical total disc replacement and anterior cervical discectomy and fusion of 1 to 2 levels from 2002 to 2009. Spine (Phila Pa 1976). 2014 Jan 01; 39(1):53-7.
    View in: PubMed
    Score: 0.037
  100. Comparison of perioperative outcomes and cost of spinal fusion for cervical trauma: weekday versus weekend admissions. Spine (Phila Pa 1976). 2013 Dec 01; 38(25):2178-83.
    View in: PubMed
    Score: 0.037
  101. A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion. Spine J. 2014 Aug 01; 14(8):1694-701.
    View in: PubMed
    Score: 0.036
  102. Incidence and risk factors for perioperative visual loss after spinal fusion. Spine J. 2014 Sep 01; 14(9):1866-72.
    View in: PubMed
    Score: 0.036
  103. Incidence and risk factors for postoperative ileus following anterior, posterior, and circumferential lumbar fusion. Spine J. 2014 Aug 01; 14(8):1680-5.
    View in: PubMed
    Score: 0.036
  104. Minimally invasive transforaminal lumbar interbody fusion: one surgeon's learning curve. Spine J. 2014 Aug 01; 14(8):1460-5.
    View in: PubMed
    Score: 0.036
  105. Incidence and risk factors for dysphagia after anterior cervical fusion. Spine (Phila Pa 1976). 2013 Oct 01; 38(21):1820-5.
    View in: PubMed
    Score: 0.036
  106. Incidence and risk factors for postoperative delirium after lumbar spine surgery. Spine (Phila Pa 1976). 2013 Sep 15; 38(20):1790-6.
    View in: PubMed
    Score: 0.036
  107. Incidence, risk factors, and mortality associated with aspiration in cervical spine surgery. Spine (Phila Pa 1976). 2013 Sep 01; 38(19):E1189-95.
    View in: PubMed
    Score: 0.036
  108. Clinical sequelae after rhBMP-2 use in a minimally invasive transforaminal lumbar interbody fusion. Spine J. 2013 Sep; 13(9):1118-25.
    View in: PubMed
    Score: 0.036
  109. Incidence and risk factors for gastrointestinal hemorrhage after lumbar fusion. Spine (Phila Pa 1976). 2013 Aug 15; 38(18):1584-9.
    View in: PubMed
    Score: 0.036
  110. Incidence and mortality of cardiac events in lumbar spine surgery. Spine (Phila Pa 1976). 2013 Jul 15; 38(16):1422-9.
    View in: PubMed
    Score: 0.036
  111. Hospital outcomes and complications of anterior and posterior cervical fusion with bone morphogenetic protein. Spine (Phila Pa 1976). 2013 Jul 01; 38(15):1304-9.
    View in: PubMed
    Score: 0.036
  112. Incidence and mortality of perioperative cardiac events in cervical spine surgery. Spine (Phila Pa 1976). 2013 Jul 01; 38(15):1268-74.
    View in: PubMed
    Score: 0.036
  113. Epidemiological trends in cervical spine surgery for degenerative diseases between 2002 and 2009. Spine (Phila Pa 1976). 2013 Jun 15; 38(14):1226-32.
    View in: PubMed
    Score: 0.035
  114. Outcomes of cervical spine surgery in teaching and non-teaching hospitals. Spine (Phila Pa 1976). 2013 Jun 01; 38(13):1089-96.
    View in: PubMed
    Score: 0.035
  115. The incidence and mortality of thromboembolic events in cervical spine surgery. Spine (Phila Pa 1976). 2013 Apr 20; 38(9):E521-7.
    View in: PubMed
    Score: 0.035
  116. Predictive factors of hospital stay in patients undergoing minimally invasive transforaminal lumbar interbody fusion and instrumentation. Spine (Phila Pa 1976). 2012 Nov 15; 37(24):2046-54.
    View in: PubMed
    Score: 0.034
  117. A comparison of perioperative costs and outcomes in patients with and without workers' compensation claims treated with minimally invasive or open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2012 Oct 15; 37(22):1914-9.
    View in: PubMed
    Score: 0.034
  118. Lumbar extracavitary corpectomy with a single stage circumferential arthrodesis: surgical technique and clinical series. Am J Orthop (Belle Mead NJ). 2012 Jul; 41(7):316-20.
    View in: PubMed
    Score: 0.033
  119. Factors affecting reoperations after anterior cervical discectomy and fusion within and outside of a Federal Drug Administration investigational device exemption cervical disc replacement trial. Spine J. 2012 May; 12(5):372-8.
    View in: PubMed
    Score: 0.032
  120. Minimally invasive thoracolumbar corpectomy and reconstruction. Orthopedics. 2012 Jan 16; 35(1):e74-9.
    View in: PubMed
    Score: 0.032
  121. Subaxial cervical and cervicothoracic fixation techniques--indications, techniques, and outcomes. Orthop Clin North Am. 2012 Jan; 43(1):19-28, vii.
    View in: PubMed
    Score: 0.032
  122. Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine (Phila Pa 1976). 2009 Jan 01; 34(1):10-6.
    View in: PubMed
    Score: 0.026
  123. Cervical kyphosis and thoracic lordoscoliosis in a patient with cerebral palsy. Orthopedics. 2008 03; 31(3):276.
    View in: PubMed
    Score: 0.025
  124. A prospective, randomized, double-blind study of the efficacy of postoperative continuous local anesthetic infusion at the iliac crest bone graft site after posterior spinal arthrodesis: a minimum of 4-year follow-up. Spine (Phila Pa 1976). 2007 Dec 01; 32(25):2790-6.
    View in: PubMed
    Score: 0.024
  125. Unusual presentation of a paraspinal mass with involvement of a lumbar facet joint and the epidural space. Orthopedics. 2006 03; 29(3):265-7.
    View in: PubMed
    Score: 0.021
  126. The management of complex soft-tissue defects after spinal instrumentation. J Bone Joint Surg Br. 2006 Jan; 88(1):8-15.
    View in: PubMed
    Score: 0.021
  127. A prospective, randomized, double-blind study evaluating the efficacy of postoperative continuous local anesthetic infusion at the iliac crest bone graft site after spinal arthrodesis. Spine (Phila Pa 1976). 2005 Nov 15; 30(22):2477-83.
    View in: PubMed
    Score: 0.021
  128. Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis. Spine J. 2005 Nov-Dec; 5(6):615-22.
    View in: PubMed
    Score: 0.021
  129. Open vertebral cement augmentation combined with lumbar decompression for the operative management of thoracolumbar stenosis secondary to osteoporotic burst fractures. J Spinal Disord Tech. 2005 Oct; 18(5):413-9.
    View in: PubMed
    Score: 0.021
  130. A prospective cohort analysis of adjacent vertebral body bone mineral density in lumbar surgery patients with or without instrumented posterolateral fusion: a 9- to 12-year follow-up. Spine (Phila Pa 1976). 2005 Aug 01; 30(15):1750-5.
    View in: PubMed
    Score: 0.021
  131. Neurofibromatosis type I with severe dystrophic kyphoscoliosis and its operative management via a simultaneous anterior-posterior approach: a case report and review of the literature. Spine J. 2005 Jul-Aug; 5(4):461-6.
    View in: PubMed
    Score: 0.020
  132. Long structural allografts in the treatment of anterior spinal column defects. Clin Orthop Relat Res. 2002 Jan; (394):121-9.
    View in: PubMed
    Score: 0.016
  133. Is the likelihood of dysphagia different in patients undergoing one-level versus two-level anterior cervical discectomy and fusion? Spine J. 2020 05; 20(5):737-744.
    View in: PubMed
    Score: 0.014
  134. Minimal Clinically Important Difference and Substantial Clinical Benefit Using PROMIS CAT in Cervical Spine Surgery. Clin Spine Surg. 2019 11; 32(9):392-397.
    View in: PubMed
    Score: 0.014
  135. Predictive Factors of Postoperative Dysphagia in Single-Level Anterior Cervical Discectomy and Fusion. Spine (Phila Pa 1976). 2019 04 01; 44(7):E400-E407.
    View in: PubMed
    Score: 0.013
  136. Incidence, Risk Factors, and Impact of Clostridium difficile Colitis After Spine Surgery: An Analysis of a National Database. Spine (Phila Pa 1976). 2018 06 15; 43(12):861-868.
    View in: PubMed
    Score: 0.013
  137. Longer Operative Time Is Associated With Increased Adverse Events After Anterior Cervical Diskectomy and Fusion: 15-Minute Intervals Matter. Orthopedics. 2018 Jul 01; 41(4):e483-e488.
    View in: PubMed
    Score: 0.012
  138. Severity Weighting of Postoperative Adverse Events in Orthopedic Surgery. Am J Orthop (Belle Mead NJ). 2017 Jul/Aug; 46(4):E235-E243.
    View in: PubMed
    Score: 0.012
  139. A Novel Groove-Entry Technique for Inserting Thoracic Percutaneous Pedicle Screws. Clin Spine Surg. 2017 03; 30(2):57-64.
    View in: PubMed
    Score: 0.011
  140. Differences in Short-Term Outcomes Between Primary and Revision Anterior Cervical Discectomy and Fusion. Spine (Phila Pa 1976). 2017 Feb 15; 42(4):253-260.
    View in: PubMed
    Score: 0.011
  141. Primary and Revision Posterior Lumbar Fusion Have Similar Short-Term Complication Rates. Spine (Phila Pa 1976). 2016 Jan; 41(2):E101-6.
    View in: PubMed
    Score: 0.011
  142. Timing of Complications After Spinal Fusion Surgery. Spine (Phila Pa 1976). 2015 Oct 01; 40(19):1527-35.
    View in: PubMed
    Score: 0.010
  143. Mesenchymal stem cell allograft as a fusion adjunct in one- and two-level anterior cervical discectomy and fusion: a matched cohort analysis. Spine J. 2016 Feb; 16(2):163-7.
    View in: PubMed
    Score: 0.010
  144. Patient perceptions of physician reimbursement for spine surgery. Spine (Phila Pa 1976). 2013 Jul 01; 38(15):1288-93.
    View in: PubMed
    Score: 0.009
  145. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine (Phila Pa 1976). 2006 Nov 15; 31(24):2813-9.
    View in: PubMed
    Score: 0.006
  146. Comparing outcomes of anterior cervical discectomy and fusion in workman's versus non-workman's compensation population. Spine J. 2002 Nov-Dec; 2(6):408-14.
    View in: PubMed
    Score: 0.004
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.