Header Logo

Connection

Kern Singh to Lumbar Vertebrae

This is a "connection" page, showing publications Kern Singh has written about Lumbar Vertebrae.
Connection Strength

41.529
  1. Response to the letter to the editor entitled: "Letter: impact of body mass index on PROMIS outcomes following lumbar decompression". Acta Neurochir (Wien). 2023 Dec; 165(12):3961-3962.
    View in: PubMed
    Score: 0.623
  2. Preoperative predictors of prolonged hospitalization in patients undergoing lateral lumbar interbody fusion. Acta Neurochir (Wien). 2023 09; 165(9):2615-2624.
    View in: PubMed
    Score: 0.609
  3. Postoperative clinical outcomes in patients undergoing MIS-TLIF versus LLIF for adjacent segment disease. Acta Neurochir (Wien). 2023 07; 165(7):1907-1914.
    View in: PubMed
    Score: 0.607
  4. Depressed patients with greater symptom duration before MIS-TLIF do not report inferior outcomes. Acta Neurochir (Wien). 2023 07; 165(7):1923-1929.
    View in: PubMed
    Score: 0.603
  5. Poor mental health scores correlate with inferior outcomes following minimally invasive transforaminal lumbar interbody fusion. Acta Neurochir (Wien). 2023 07; 165(7):1931-1942.
    View in: PubMed
    Score: 0.602
  6. Perioperative Predictors in Patients Undergoing Lateral Lumbar Interbody Fusion for Minimum Clinically Important Difference Achievement. World Neurosurg. 2023 Jul; 175:e914-e924.
    View in: PubMed
    Score: 0.602
  7. Influence of Prolonged Duration of Symptoms Before MIS-TLIF in a Workers' Compensation Population. World Neurosurg. 2023 Jul; 175:e439-e446.
    View in: PubMed
    Score: 0.600
  8. Minimum Clinically Important Difference in Patients Undergoing Minimally Invasive Transforaminal Lumbar Interbody Fusion. Neurosurgery. 2023 06 01; 92(6):1199-1207.
    View in: PubMed
    Score: 0.591
  9. Impact of Ambulatory Setting for Workers' Compensation Patients Undergoing One-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion and Review of the Literature. World Neurosurg. 2022 Nov; 167:e251-e267.
    View in: PubMed
    Score: 0.574
  10. Spine Surgery Complications in the Ambulatory Surgical Center Setting: Systematic Review. Clin Spine Surg. 2022 04 01; 35(3):118-126.
    View in: PubMed
    Score: 0.560
  11. How Does Open Access Publication Impact Readership and Citation Rates of Lumbar Spine Literature? Clin Spine Surg. 2022 07 01; 35(6):E558-E565.
    View in: PubMed
    Score: 0.557
  12. Single-level TLIF Versus LLIF at L4-5: A Comparison of Patient-reported Outcomes and Recovery Ratios. J Am Acad Orthop Surg. 2022 Feb 15; 30(4):e495-e505.
    View in: PubMed
    Score: 0.555
  13. Impact of Obesity Severity on Achieving a Minimum Clinically Important Difference Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2022 02 01; 35(1):E267-E273.
    View in: PubMed
    Score: 0.554
  14. Preliminary Evaluation of Standing Full-Length Plain Radiographs Utility in an Adult Degenerative Spine Practice. J Am Acad Orthop Surg. 2022 Feb 01; 30(3):e348-e360.
    View in: PubMed
    Score: 0.554
  15. How Do Patient-Reported Outcomes Vary Between Lumbar Fusion Patients with Complete Versus Incomplete Follow-Up? World Neurosurg. 2022 02; 158:e717-e725.
    View in: PubMed
    Score: 0.546
  16. Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion versus Anterior Lumbar Interbody Fusion with Posterior Instrumentation at L5/S1. World Neurosurg. 2022 01; 157:e111-e122.
    View in: PubMed
    Score: 0.541
  17. Impact of Advanced Age on Postoperative Outcomes Following Transforaminal Lumbar Interbody Fusion. J Am Acad Orthop Surg. 2021 Sep 01; 29(17):e869-e879.
    View in: PubMed
    Score: 0.538
  18. Validation of VR-12 Physical Function in Minimally Invasive Lumbar Discectomy. World Neurosurg. 2021 11; 155:e362-e368.
    View in: PubMed
    Score: 0.537
  19. Multimodal Analgesic Management for Lumbar Decompression Surgery in the Ambulatory Setting: Clinical Case Series and Review of the Literature. World Neurosurg. 2021 10; 154:e656-e664.
    View in: PubMed
    Score: 0.534
  20. Achievement of a Minimum Clinically Important Difference for Back Disability Is a Suitable Predictor of Patient Satisfaction Among Lumbar Fusion Patients. World Neurosurg. 2021 08; 152:e94-e100.
    View in: PubMed
    Score: 0.527
  21. The Minimum Clinically Important Difference for Patient Health Questionnaire-9 in Minimally Invasive Transforaminal Interbody Fusion. Spine (Phila Pa 1976). 2021 May 01; 46(9):603-609.
    View in: PubMed
    Score: 0.525
  22. Validation of PROMIS Physical Function in MIS TLIF: 2-Year Follow-up. Spine (Phila Pa 1976). 2020 Nov 15; 45(22):E1516-E1522.
    View in: PubMed
    Score: 0.509
  23. The Effect of Preoperative Symptom Duration on Postoperative Outcomes After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2020 07; 33(6):E263-E268.
    View in: PubMed
    Score: 0.496
  24. The Impact of Comorbidity Burden on Postoperative PROMIS Physical Function Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2020 07; 33(6):E294-E298.
    View in: PubMed
    Score: 0.496
  25. Outcomes of Expandable Interbody Devices in Lumbar Fusion: A Systematic Review and Meta-analysis. Clin Spine Surg. 2020 07; 33(6):230-243.
    View in: PubMed
    Score: 0.496
  26. Validity of Patient Health Questionnaire-9 in Minimally Invasive Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2020 Jun 01; 45(11):E663-E669.
    View in: PubMed
    Score: 0.493
  27. The identification of risk factors for increased postoperative pain following minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. 2020 06; 29(6):1304-1310.
    View in: PubMed
    Score: 0.484
  28. The Influence of Preoperative Mental Health on PROMIS Physical Function Outcomes Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2020 Feb 15; 45(4):E236-E243.
    View in: PubMed
    Score: 0.483
  29. Postoperative Outcomes Based on American Society of Anesthesiologists Score After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2020 02; 33(1):E40-E42.
    View in: PubMed
    Score: 0.482
  30. PHQ-9 Score Predicts Postoperative Outcomes Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2019 12; 32(10):444-448.
    View in: PubMed
    Score: 0.476
  31. Sex Differences on Postoperative Pain and Disability Following Minimally Invasive Lumbar Discectomy. Clin Spine Surg. 2019 12; 32(10):E444-E448.
    View in: PubMed
    Score: 0.476
  32. The Use of Patient-Reported Outcome Measurement Information System Physical Function to Predict Outcomes Based on Body Mass Index Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2019 Dec 01; 44(23):E1388-E1395.
    View in: PubMed
    Score: 0.476
  33. Patient Perceptions of Iliac Crest Bone Grafting in Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2019 12; 32(10):430-434.
    View in: PubMed
    Score: 0.476
  34. Safety and Efficacy of Revision Minimally Invasive Lumbar Decompression in the Ambulatory Setting. Spine (Phila Pa 1976). 2019 Apr 15; 44(8):E494-E499.
    View in: PubMed
    Score: 0.456
  35. Device solutions for a challenging spine surgery: minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). Expert Rev Med Devices. 2019 04; 16(4):299-305.
    View in: PubMed
    Score: 0.455
  36. Impact of the Number of Levels on Adverse Events and Length of Stay Following Posterior Lumbar Fusion Procedures. Clin Spine Surg. 2019 04; 32(3):120-124.
    View in: PubMed
    Score: 0.455
  37. PROMIS Physical Function Score Strongly Correlates With Legacy Outcome Measures in Minimally Invasive Lumbar Microdiscectomy. Spine (Phila Pa 1976). 2019 03 15; 44(6):442-446.
    View in: PubMed
    Score: 0.453
  38. The Impact of Comorbidity Burden on Complications, Length of Stay, and Direct Hospital Costs After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2019 03 01; 44(5):363-368.
    View in: PubMed
    Score: 0.452
  39. Does Gender Influence Postoperative Outcomes in Minimally Invasive Transforaminal Lumbar Interbody Fusion? Clin Spine Surg. 2019 03; 32(2):E107-E111.
    View in: PubMed
    Score: 0.452
  40. The Effect of Preoperative Symptom Duration on Postoperative Outcomes After a Tubular Lumbar Microdiscectomy. Clin Spine Surg. 2019 02; 32(1):E27-E30.
    View in: PubMed
    Score: 0.450
  41. The Effect of Preoperative Medications on Length of Stay, Inpatient Pain, and Narcotics Consumption After Minimally Invasive Transforaminal Lumbar Interbody Fusion. Clin Spine Surg. 2019 02; 32(1):E37-E42.
    View in: PubMed
    Score: 0.450
  42. Comparison of Postoperative Outcomes Between Primary MIS TLIF and MIS TLIF With Revision Decompression. Spine (Phila Pa 1976). 2019 Jan 15; 44(2):150-156.
    View in: PubMed
    Score: 0.448
  43. Impact of local steroid application in a minimally invasive transforaminal lumbar interbody fusion: results of a prospective, randomized, single-blind trial. J Neurosurg Spine. 2018 11 09; 30(2):222-227.
    View in: PubMed
    Score: 0.443
  44. Iliac Crest Bone Graft for Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Prospective Analysis of Inpatient Pain, Narcotics Consumption, and Costs. Spine (Phila Pa 1976). 2018 09 15; 43(18):1307-1312.
    View in: PubMed
    Score: 0.438
  45. Does Day of Surgery Affect Hospital Length of Stay and Charges Following Minimally Invasive Transforaminal Lumbar Interbody Fusion? Clin Spine Surg. 2018 06; 31(5):E291-E295.
    View in: PubMed
    Score: 0.429
  46. Validity of PROMIS in minimally invasive transforaminal lumbar interbody fusion: a preliminary evaluation. J Neurosurg Spine. 2018 07; 29(1):28-33.
    View in: PubMed
    Score: 0.425
  47. Is Body Mass Index a Risk Factor for Revision Procedures After Minimally Invasive Transforaminal Lumbar Interbody Fusion? Clin Spine Surg. 2018 02; 31(1):E85-E91.
    View in: PubMed
    Score: 0.420
  48. Risk Factors Associated With Failure to Reach Minimal Clinically Important Difference in Patient-reported Outcomes Following Minimally Invasive Transforaminal Lumbar Interbody Fusion for Spondylolisthesis. Clin Spine Surg. 2018 02; 31(1):E92-E97.
    View in: PubMed
    Score: 0.420
  49. Radiographic Analysis of Psoas Morphology and its Association With Neurovascular Structures at L4-5 With Reference to Lateral Approaches. Spine (Phila Pa 1976). 2017 Dec 15; 42(24):E1386-E1392.
    View in: PubMed
    Score: 0.416
  50. Preoperative Mental Health is not Predictive of Patient-reported Outcomes Following a Minimally Invasive Lumbar Discectomy. Clin Spine Surg. 2017 Dec; 30(10):E1388-E1391.
    View in: PubMed
    Score: 0.415
  51. Iliac Crest Bone Graft: A Minimally Invasive Harvesting Technique. Clin Spine Surg. 2017 Dec; 30(10):439-441.
    View in: PubMed
    Score: 0.415
  52. Narcotic Consumption Following Anterior and Lateral Lumbar Interbody Fusion Procedures. Clin Spine Surg. 2017 Nov; 30(9):E1190-E1200.
    View in: PubMed
    Score: 0.412
  53. Multimodal Analgesia Versus Intravenous Patient-Controlled Analgesia for Minimally Invasive Transforaminal Lumbar Interbody Fusion Procedures. Spine (Phila Pa 1976). 2017 Aug 01; 42(15):1145-1150.
    View in: PubMed
    Score: 0.405
  54. Neuroforaminal Bone Growth Following Minimally Invasive Transforaminal Lumbar Interbody Fusion With BMP: A Computed Tomographic Analysis. Clin Spine Surg. 2017 Jul; 30(6):E754-E758.
    View in: PubMed
    Score: 0.403
  55. Effects of Intraoperative Anesthetic Medications on Postoperative Urinary Retention After Single-Level Lumbar Fusion. Spine (Phila Pa 1976). 2016 Sep 15; 41(18):1441-1446.
    View in: PubMed
    Score: 0.381
  56. Incidence and Risk Factors for Pneumonia After Posterior Lumbar Fusion Procedures: An ACS-NSQIP Study. Spine (Phila Pa 1976). 2016 Jun; 41(12):1058-1063.
    View in: PubMed
    Score: 0.374
  57. Does Greater Body Mass Index Increase the Risk for Revision Procedures Following a Single-Level Minimally Invasive Lumbar Discectomy? Spine (Phila Pa 1976). 2016 May; 41(9):816-21.
    View in: PubMed
    Score: 0.371
  58. Primary Versus Revision Single-level Minimally Invasive Lumbar Discectomy: Analysis of Clinical Outcomes and Narcotic Utilization. Spine (Phila Pa 1976). 2015 Sep 15; 40(18):E1025-30.
    View in: PubMed
    Score: 0.356
  59. Preoperative narcotic utilization: accuracy of patient self-reporting and its association with postoperative narcotic consumption. J Neurosurg Spine. 2016 Jan; 24(1):206-14.
    View in: PubMed
    Score: 0.355
  60. BMP-2-induced Neuroforaminal Bone Growth in the Setting of a Minimally Invasive Transforaminal Lumbar Interbody Fusion. J Spinal Disord Tech. 2015 Jun; 28(5):186-8.
    View in: PubMed
    Score: 0.349
  61. Cost analysis of incidental durotomy in spine surgery. Spine (Phila Pa 1976). 2014 Aug 01; 39(17):E1042-51.
    View in: PubMed
    Score: 0.329
  62. Body mass index as a predictor of complications and mortality after lumbar spine surgery. Spine (Phila Pa 1976). 2014 May 01; 39(10):798-804.
    View in: PubMed
    Score: 0.323
  63. Cerebral vascular accidents after lumbar spine fusion. Spine (Phila Pa 1976). 2014 Apr 15; 39(8):673-7.
    View in: PubMed
    Score: 0.322
  64. Epidemiological trends in the utilization of bone morphogenetic protein in spinal fusions from 2002 to 2011. Spine (Phila Pa 1976). 2014 Mar 15; 39(6):491-6.
    View in: PubMed
    Score: 0.320
  65. Complications after lumbar spine surgery between teaching and nonteaching hospitals. Spine (Phila Pa 1976). 2014 Mar 01; 39(5):417-23.
    View in: PubMed
    Score: 0.320
  66. Prospective, randomized, controlled trial of silicate-substituted calcium phosphate versus rhBMP-2 in a minimally invasive transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2014 Feb 01; 39(3):185-91.
    View in: PubMed
    Score: 0.318
  67. A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion. Spine J. 2014 Aug 01; 14(8):1694-701.
    View in: PubMed
    Score: 0.313
  68. Minimally invasive transforaminal lumbar interbody fusion: one surgeon's learning curve. Spine J. 2014 Aug 01; 14(8):1460-5.
    View in: PubMed
    Score: 0.311
  69. Incidence and risk factors for postoperative delirium after lumbar spine surgery. Spine (Phila Pa 1976). 2013 Sep 15; 38(20):1790-6.
    View in: PubMed
    Score: 0.310
  70. Incidence and risk factors for gastrointestinal hemorrhage after lumbar fusion. Spine (Phila Pa 1976). 2013 Aug 15; 38(18):1584-9.
    View in: PubMed
    Score: 0.308
  71. Incidence and mortality of cardiac events in lumbar spine surgery. Spine (Phila Pa 1976). 2013 Jul 15; 38(16):1422-9.
    View in: PubMed
    Score: 0.306
  72. The incidence and mortality of thromboembolic events in lumbar spine surgery. Spine (Phila Pa 1976). 2013 Jun 01; 38(13):1154-9.
    View in: PubMed
    Score: 0.303
  73. Predictive factors of hospital stay in patients undergoing minimally invasive transforaminal lumbar interbody fusion and instrumentation. Spine (Phila Pa 1976). 2012 Nov 15; 37(24):2046-54.
    View in: PubMed
    Score: 0.292
  74. A comparison of perioperative costs and outcomes in patients with and without workers' compensation claims treated with minimally invasive or open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2012 Oct 15; 37(22):1914-9.
    View in: PubMed
    Score: 0.291
  75. Lumbar extracavitary corpectomy with a single stage circumferential arthrodesis: surgical technique and clinical series. Am J Orthop (Belle Mead NJ). 2012 Jul; 41(7):316-20.
    View in: PubMed
    Score: 0.285
  76. Repeat use of human recombinant bone morphogenetic protein-2 for second level lumbar arthrodesis. Spine (Phila Pa 1976). 2011 Feb 01; 36(3):192-6.
    View in: PubMed
    Score: 0.258
  77. Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine (Phila Pa 1976). 2009 Jan 01; 34(1):10-6.
    View in: PubMed
    Score: 0.224
  78. Lumbar spinal stenosis. J Am Acad Orthop Surg. 2008 Mar; 16(3):171-6.
    View in: PubMed
    Score: 0.211
  79. A prospective, randomized, double-blind study of the efficacy of postoperative continuous local anesthetic infusion at the iliac crest bone graft site after posterior spinal arthrodesis: a minimum of 4-year follow-up. Spine (Phila Pa 1976). 2007 Dec 01; 32(25):2790-6.
    View in: PubMed
    Score: 0.207
  80. Use of recombinant human bone morphogenetic protein-2 as an adjunct in posterolateral lumbar spine fusion: a prospective CT-scan analysis at one and two years. J Spinal Disord Tech. 2006 Aug; 19(6):416-23.
    View in: PubMed
    Score: 0.189
  81. Unusual presentation of a paraspinal mass with involvement of a lumbar facet joint and the epidural space. Orthopedics. 2006 03; 29(3):265-7.
    View in: PubMed
    Score: 0.184
  82. Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis. Spine J. 2005 Nov-Dec; 5(6):615-22.
    View in: PubMed
    Score: 0.179
  83. Open vertebral cement augmentation combined with lumbar decompression for the operative management of thoracolumbar stenosis secondary to osteoporotic burst fractures. J Spinal Disord Tech. 2005 Oct; 18(5):413-9.
    View in: PubMed
    Score: 0.178
  84. A prospective cohort analysis of adjacent vertebral body bone mineral density in lumbar surgery patients with or without instrumented posterolateral fusion: a 9- to 12-year follow-up. Spine (Phila Pa 1976). 2005 Aug 01; 30(15):1750-5.
    View in: PubMed
    Score: 0.176
  85. The Current Status of Awake Endoscopic Surgery: A Systematic Review and Meta-Analysis. World Neurosurg. 2023 Dec; 180:e198-e209.
    View in: PubMed
    Score: 0.155
  86. Effect of baseline veterans RAND-12 physical composite score on postoperative patient-reported outcome measures following lateral lumbar interbody fusion. Acta Neurochir (Wien). 2023 11; 165(11):3531-3537.
    View in: PubMed
    Score: 0.155
  87. Time to achievement of minimum clinically important difference after lumbar decompression. Acta Neurochir (Wien). 2023 09; 165(9):2625-2631.
    View in: PubMed
    Score: 0.153
  88. Coronavirus Disease 2019 Shutdown Did Not Affect Mental Health Scores in Lumbar Decompression Patients in a Large Metropolitan Region. Clin Spine Surg. 2023 Dec 01; 36(10):E484-E487.
    View in: PubMed
    Score: 0.153
  89. Establishing Minimum Clinically Important Difference Thresholds for Physical Function and Pain in Patients Undergoing Anterior Lumbar Interbody Fusion. World Neurosurg. 2023 Jul; 175:e352-e360.
    View in: PubMed
    Score: 0.150
  90. Impact of body mass index on PROMIS outcomes following lumbar decompression. Acta Neurochir (Wien). 2023 06; 165(6):1427-1434.
    View in: PubMed
    Score: 0.149
  91. Recovery ratios and minimum clinically important difference for clinical outcomes in workers' compensation recipients undergoing MIS-TLIF versus ALIF. Acta Neurochir (Wien). 2023 02; 165(2):315-323.
    View in: PubMed
    Score: 0.148
  92. Correlation of mental health with physical function, pain, and disability following anterior lumbar interbody fusion. Acta Neurochir (Wien). 2023 02; 165(2):341-349.
    View in: PubMed
    Score: 0.148
  93. Impact of Sleep Disturbance on Clinical Outcomes in Lumbar Decompression. World Neurosurg. 2023 Apr; 172:e304-e311.
    View in: PubMed
    Score: 0.148
  94. Establishing minimum clinically important difference for patient-reported outcome measures in patients undergoing lateral lumbar interbody fusion. Acta Neurochir (Wien). 2023 02; 165(2):325-334.
    View in: PubMed
    Score: 0.148
  95. Impact of preoperative symptom duration in patients undergoing lateral lumbar interbody fusion. Acta Neurochir (Wien). 2023 01; 165(1):89-97.
    View in: PubMed
    Score: 0.147
  96. Influence of Preoperative Disability on Clinical Outcomes in Patients Undergoing Anterior Lumbar Interbody Fusion. World Neurosurg. 2023 Mar; 171:e412-e421.
    View in: PubMed
    Score: 0.147
  97. Single-level Minimally Invasive Transforaminal Lumbar Interbody Fusion Versus Anterior Lumbar Interbody Fusion for the Surgical Treatment of Isthmic Spondylolisthesis. J Am Acad Orthop Surg. 2022 Nov 01; 30(21):e1382-e1390.
    View in: PubMed
    Score: 0.144
  98. Minimally Invasive Transforaminal versus Anterior Lumbar Interbody Fusion in Patients Undergoing Revision Fusion: Clinical Outcome Comparison. World Neurosurg. 2022 Nov; 167:e1208-e1218.
    View in: PubMed
    Score: 0.144
  99. The Effect of the Severity of Preoperative Leg Pain on Patient-Reported Outcomes, Minimum Clinically Important Difference Achievement, and Patient Satisfaction After Minimally Invasive Transforaminal Lumbar Interbody Fusion. World Neurosurg. 2022 Nov; 167:e1196-e1207.
    View in: PubMed
    Score: 0.144
  100. Comparing Patient-Reported Outcomes in Patients Undergoing Lumbar Fusion for Isthmic Spondylolisthesis with Predominant Back Pain versus Predominant Leg Pain Symptoms. World Neurosurg. 2022 Oct; 166:e672-e680.
    View in: PubMed
    Score: 0.143
  101. Does Preoperative Symptom Duration Impact Clinical Outcomes After Minimally Invasive Transforaminal Lumbar Interbody Fusion in the Ambulatory Setting? World Neurosurg. 2022 Oct; 166:e599-e606.
    View in: PubMed
    Score: 0.143
  102. The Influence of Presenting Physical Function on Postoperative Patient Satisfaction and Clinical Outcomes Following Minimally Invasive Lumbar Decompression. Clin Spine Surg. 2023 02 01; 36(1):E6-E13.
    View in: PubMed
    Score: 0.142
  103. Presenting Mental Health Influences Postoperative Clinical Trajectory and Long-Term Patient Satisfaction After Lumbar Decompression. World Neurosurg. 2022 08; 164:e649-e661.
    View in: PubMed
    Score: 0.141
  104. Patient Satisfaction Following Lumbar Decompression: What is the Role of Mental Health? World Neurosurg. 2022 08; 164:e540-e547.
    View in: PubMed
    Score: 0.141
  105. Lateral Lumbar Interbody Fusion: Single Surgeon Learning Curve. World Neurosurg. 2022 08; 164:e411-e419.
    View in: PubMed
    Score: 0.141
  106. Obesity and Workers' Compensation in the Setting of Minimally Invasive Lumbar Decompression. World Neurosurg. 2022 08; 164:e341-e348.
    View in: PubMed
    Score: 0.141
  107. Severe Comorbidity Burden Does Not Influence Postoperative Clinical Outcomes and Trajectory for Back Pain, Leg Pain, Physical Function, or Disability in Patients Undergoing Minimally Invasive Transforaminal Lumbar Interbody Fusion: Cohort-Matched Analysis. World Neurosurg. 2022 08; 164:e157-e168.
    View in: PubMed
    Score: 0.141
  108. Risk Assessment of Anterior Lumbar Interbody Fusion Access in Degenerative Spinal Conditions. Clin Spine Surg. 2022 08 01; 35(7):E601-E609.
    View in: PubMed
    Score: 0.140
  109. Meeting Patient Expectations and Achieving a Minimal Clinically Important Difference for Back Disability, Back Pain, and Leg Pain May Provide Predictive Utility for Achieving Patient Satisfaction Among Lumbar Decompression Patients. World Neurosurg. 2022 06; 162:e328-e335.
    View in: PubMed
    Score: 0.139
  110. Preoperative Duration of Symptoms Does Not Affect Outcomes of Anterior Lumbar Interbody Fusion. Neurosurgery. 2022 02 01; 90(2):215-220.
    View in: PubMed
    Score: 0.138
  111. Influence of Self-Identified Gender on Clinical Outcomes and Postoperative Patient Satisfaction After Lumbar Decompression: Cohort-Matched Analysis. World Neurosurg. 2022 04; 160:e616-e627.
    View in: PubMed
    Score: 0.138
  112. Impact of Time to Surgery for Patients Using Workers' Compensation Insurance Undergoing Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Preliminary Analysis of Clinical Outcomes. World Neurosurg. 2022 04; 160:e421-e429.
    View in: PubMed
    Score: 0.138
  113. The Effect of the Severity of Preoperative Disability on Patient-Reported Outcomes and Patient Satisfaction Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. World Neurosurg. 2022 Mar; 159:e334-e346.
    View in: PubMed
    Score: 0.137
  114. Influence of Preoperative 12-Item Short Form Mental Composite Score on Clinical Outcomes in an Isthmic Spondylolisthesis Population Undergoing Minimally Invasive Transforaminal Lumbar Interbody Fusion. World Neurosurg. 2022 02; 158:e1022-e1030.
    View in: PubMed
    Score: 0.137
  115. The Effect of the Severity of Preoperative Back Pain on Patient-Reported Outcomes, Recovery Ratios, and Patient Satisfaction Following Minimally Invasive Transforaminal Lumbar Interbody Fusion (MIS-TLIF). World Neurosurg. 2021 12; 156:e254-e265.
    View in: PubMed
    Score: 0.135
  116. The Influence of Comorbidity on Postoperative Outcomes Following Lumbar Decompression. Clin Spine Surg. 2021 08 01; 34(7):E390-E396.
    View in: PubMed
    Score: 0.134
  117. Preoperative patient activation is predictive of improvements in patient-reported outcomes following minimally invasive lumbar decompression. Eur Spine J. 2020 09; 29(9):2222-2230.
    View in: PubMed
    Score: 0.124
  118. Complications Following Minimally Invasive Transforaminal Lumbar Interbody Fusion: Incidence, Independent Risk Factors, and Clinical Impact. Clin Spine Surg. 2020 06; 33(5):E236-E240.
    View in: PubMed
    Score: 0.123
  119. Opioid Consumption Patterns After Lumbar Microdiscectomy or Decompression. Spine (Phila Pa 1976). 2019 Nov 15; 44(22):1599-1605.
    View in: PubMed
    Score: 0.119
  120. Assessing Online Patient Education Readability for Spine Surgery Procedures. Clin Spine Surg. 2018 03; 31(2):E146-E151.
    View in: PubMed
    Score: 0.105
  121. Lumbar Spine Injuries in the Athlete. Instr Course Lect. 2017 Feb 15; 66:403-408.
    View in: PubMed
    Score: 0.098
  122. Malnutrition Predicts Infectious and Wound Complications Following Posterior Lumbar Spinal Fusion. Spine (Phila Pa 1976). 2016 Nov 01; 41(21):1693-1699.
    View in: PubMed
    Score: 0.096
  123. Bone Morphogenetic Proteins in Lumbar Arthrodesis: What Is All the Debate About? Commentary on an article by Daniel C. Beachler, PhD, MHS, et al.: "Bone Morphogenetic Protein Use and Cancer Risk Among Patients Undergoing Lumbar Arthrodesis: A Case-Cohort Study Using the SEER-Medicare Database". J Bone Joint Surg Am. 2016 07 06; 98(13):e57.
    View in: PubMed
    Score: 0.094
  124. Primary and Revision Posterior Lumbar Fusion Have Similar Short-Term Complication Rates. Spine (Phila Pa 1976). 2016 Jan; 41(2):E101-6.
    View in: PubMed
    Score: 0.091
  125. Timing of Complications After Spinal Fusion Surgery. Spine (Phila Pa 1976). 2015 Oct 01; 40(19):1527-35.
    View in: PubMed
    Score: 0.089
  126. Postoperative Narcotic Consumption in Workman's Compensation Patients Following a Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2015 Aug 15; 40(16):1284-8.
    View in: PubMed
    Score: 0.088
  127. Minimally Invasive Transforaminal Lumbar Interbody Fusion. J Spinal Disord Tech. 2015 Jul; 28(6):222-5.
    View in: PubMed
    Score: 0.088
  128. Clinical sequelae after rhBMP-2 use in a minimally invasive transforaminal lumbar interbody fusion. Spine J. 2013 Sep; 13(9):1118-25.
    View in: PubMed
    Score: 0.077
  129. The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech. 2010 Jun; 23(4):223-8.
    View in: PubMed
    Score: 0.062
  130. A prospective, randomized, double-blind study evaluating the efficacy of postoperative continuous local anesthetic infusion at the iliac crest bone graft site after spinal arthrodesis. Spine (Phila Pa 1976). 2005 Nov 15; 30(22):2477-83.
    View in: PubMed
    Score: 0.045
  131. The surgical management of thoracolumbar injuries. J Spinal Cord Med. 2004; 27(2):95-101.
    View in: PubMed
    Score: 0.040
  132. Long structural allografts in the treatment of anterior spinal column defects. Clin Orthop Relat Res. 2002 Jan; (394):121-9.
    View in: PubMed
    Score: 0.034
  133. Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976). 2005 Jan 01; 30(1):25-31; discussion 31-2.
    View in: PubMed
    Score: 0.011
  134. Biomechanical evaluation of contemporary posterior spinal internal fixation configurations in an unstable burst-fracture calf spine model: special references of hook configurations and pedicle screws. Spine (Phila Pa 1976). 2004 Feb 01; 29(3):257-62.
    View in: PubMed
    Score: 0.010
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.