Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Brian Forsythe and Nikhil Verma.
Connection Strength

15.235
  1. A Radiostereometric Analysis of Tendon Migration After Arthroscopic and Mini-Open Biceps Tenodesis: Interference Screw Versus Single Suture Anchor Fixation. Am J Sports Med. 2023 09; 51(11):2869-2880.
    View in: PubMed
    Score: 0.881
  2. No Difference in Clinical Outcomes for Arthroscopic Suprapectoral Versus Open Subpectoral Biceps Tenodesis at Midterm Follow-up: A Randomized Prospective Analysis. Am J Sports Med. 2022 05; 50(6):1486-1494.
    View in: PubMed
    Score: 0.807
  3. Bone Marrow Aspirate Concentrate Augmentation May Accelerate Allograft Ligamentization in Anterior Cruciate Ligament Reconstruction: A Double-Blinded Randomized Controlled Trial. Arthroscopy. 2022 07; 38(7):2255-2264.
    View in: PubMed
    Score: 0.791
  4. Delaying ACL reconstruction beyond 6?months from injury impacts likelihood for clinically significant outcome improvement. Knee. 2021 Dec; 33:290-297.
    View in: PubMed
    Score: 0.780
  5. Cost-Effective 3-Dimensionally Printed Patient-Specific Glenoid Drill Guides Versus Standard Non-Specific Instrumentation: A Randomized Controlled Trial Comparing the Accuracy of Glenoid Component Placement in Anatomic Total Shoulder Arthroplasty. J Shoulder Elbow Surg. 2023 Sep 27.
    View in: PubMed
    Score: 0.222
  6. Determining the Time Required to Achieve Clinically Significant Outcomes on the PROMIS Upper Extremity Questionnaire After Arthroscopic Rotator Cuff Repair. Orthop J Sports Med. 2023 Apr; 11(4):23259671231157038.
    View in: PubMed
    Score: 0.215
  7. Prospective Randomized Trial of Biologic Augmentation With Bone Marrow Aspirate Concentrate in Patients Undergoing Arthroscopic Rotator Cuff Repair. Am J Sports Med. 2023 04; 51(5):1234-1242.
    View in: PubMed
    Score: 0.213
  8. Travel distance does not affect outcomes after total shoulder arthroplasty. JSES Int. 2022 Nov; 6(6):903-909.
    View in: PubMed
    Score: 0.206
  9. How Long Does It Take to Achieve Clinically Significant Outcomes After Isolated Biceps Tenodesis? Orthop J Sports Med. 2022 Mar; 10(3):23259671221070857.
    View in: PubMed
    Score: 0.200
  10. Preoperative Opioid Use Predicts Postoperative Opioid Use and Inferior Clinically Notable Outcomes After Total Shoulder Arthroplasty. J Am Acad Orthop Surg. 2022 Jan 15; 30(2):e242-e251.
    View in: PubMed
    Score: 0.198
  11. Travel Distance Does Not Affect Outcomes After Arthroscopic Rotator Cuff Repair. Arthrosc Sports Med Rehabil. 2022 Apr; 4(2):e511-e517.
    View in: PubMed
    Score: 0.197
  12. Two-Year Clinical Outcomes and Survivorship After Isolated Biceps Tenodesis. Arthroscopy. 2022 06; 38(6):1834-1842.
    View in: PubMed
    Score: 0.197
  13. PROMIS Upper Extremity underperforms psychometrically relative to American Shoulder and Elbow Surgeons score in patients undergoing primary rotator cuff repair. J Shoulder Elbow Surg. 2022 Apr; 31(4):718-725.
    View in: PubMed
    Score: 0.196
  14. The Minimally Clinically Important Difference and Substantial Clinical Benefit in Anterior Cruciate Ligament Reconstruction: A Time-to-Achievement Analysis. Orthopedics. 2021 Sep-Oct; 44(5):299-305.
    View in: PubMed
    Score: 0.193
  15. Predicting Patient Satisfaction With Maximal Outcome Improvement After Biceps Tenodesis. Orthopedics. 2021 May-Jun; 44(3):e359-e366.
    View in: PubMed
    Score: 0.188
  16. Establishing Clinically Significant Outcomes for Patient-Reported Outcomes Measurement Information System After Biceps Tenodesis. Arthroscopy. 2021 06; 37(6):1731-1739.
    View in: PubMed
    Score: 0.184
  17. Machine-learning model successfully predicts patients at risk for prolonged postoperative opioid use following elective knee arthroscopy. Knee Surg Sports Traumatol Arthrosc. 2022 Mar; 30(3):762-772.
    View in: PubMed
    Score: 0.184
  18. Time to Achievement of Clinically Significant Outcomes After Isolated Arthroscopic Partial Meniscectomy: A Multivariate Analysis. Arthrosc Sports Med Rehabil. 2020 Dec; 2(6):e723-e733.
    View in: PubMed
    Score: 0.183
  19. Performance of PROMIS Physical Function, Pain Interference, and Depression Computer Adaptive Tests Instruments in Patients Undergoing Meniscal Surgery. Arthrosc Sports Med Rehabil. 2020 Oct; 2(5):e451-e459.
    View in: PubMed
    Score: 0.182
  20. Time Required to Achieve Clinically Significant Outcomes After Arthroscopic Rotator Cuff Repair. Am J Sports Med. 2020 12; 48(14):3447-3453.
    View in: PubMed
    Score: 0.182
  21. Development of supervised machine learning algorithms for prediction of satisfaction at 2 years following total shoulder arthroplasty. J Shoulder Elbow Surg. 2021 Jun; 30(6):e290-e299.
    View in: PubMed
    Score: 0.181
  22. The Patient Acceptable Symptomatic State in Primary Anterior Cruciate Ligament Reconstruction: Predictors of Achievement. Arthroscopy. 2021 02; 37(2):600-605.
    View in: PubMed
    Score: 0.180
  23. Patient Satisfaction After Total Shoulder Arthroplasty. Orthopedics. 2020 Nov 01; 43(6):e492-e497.
    View in: PubMed
    Score: 0.179
  24. Establishing clinically significant outcome thresholds for the Single Assessment Numeric Evaluation 2 years following total shoulder arthroplasty. J Shoulder Elbow Surg. 2021 Apr; 30(4):e137-e146.
    View in: PubMed
    Score: 0.178
  25. How can we define clinically important improvement in pain scores after biceps tenodesis? J Shoulder Elbow Surg. 2021 Feb; 30(2):430-438.
    View in: PubMed
    Score: 0.178
  26. Preoperative Opioid Use Predicts Prolonged Postoperative Opioid Use and Inferior Patient Outcomes Following Anterior Cruciate Ligament Reconstruction. Arthroscopy. 2020 10; 36(10):2681-2688.e1.
    View in: PubMed
    Score: 0.177
  27. Preoperative psychometric properties of visual analog scale asessments for function, pain, and strength compared with legacy upper extremity outcome measures in glenohumeral osteoarthritis. JSES Int. 2020 Sep; 4(3):443-448.
    View in: PubMed
    Score: 0.177
  28. Dynamic Three-Dimensional Computed Tomography Mapping of Isometric Posterior Cruciate Ligament Attachment Sites on the Tibia and Femur: Single- Versus Double-Bundle Analysis. Arthroscopy. 2020 11; 36(11):2875-2884.
    View in: PubMed
    Score: 0.177
  29. Influence of mental health on postoperative outcomes in patients following biceps tenodesis. J Shoulder Elbow Surg. 2020 Nov; 29(11):2248-2256.
    View in: PubMed
    Score: 0.177
  30. Influence of workers' compensation status on postoperative outcomes in patients following biceps tenodesis: a matched-pair cohort analysis. J Shoulder Elbow Surg. 2020 Dec; 29(12):2530-2537.
    View in: PubMed
    Score: 0.177
  31. Perioperative Opioid Use Predicts Postoperative Opioid Use and Inferior Outcomes After Shoulder Arthroscopy. Arthroscopy. 2020 10; 36(10):2645-2654.
    View in: PubMed
    Score: 0.177
  32. Author Reply to "Regarding "Primary Medial Patellofemoral Ligament Repair Versus Reconstruction: Rates and Risk Factors for Instability Recurrence in a Young, Active Patient Population". Arthroscopy. 2020 06; 36(6):1496-1499.
    View in: PubMed
    Score: 0.177
  33. Psychometric properties of visual analog scale assessments for function, pain, and strength compared with disease-specific upper extremity outcome measures in rotator cuff repair. JSES Int. 2020 Sep; 4(3):619-624.
    View in: PubMed
    Score: 0.176
  34. Relationship between the Patient-Reported Outcomes Measurement Information System (PROMIS) computer adaptive testing and legacy instruments in patients undergoing isolated biceps tenodesis. J Shoulder Elbow Surg. 2020 Jun; 29(6):1214-1222.
    View in: PubMed
    Score: 0.174
  35. Quantifying the Opportunity Cost of Resident Involvement in Academic Orthopaedic Sports Medicine: A Matched-Pair Analysis. Arthroscopy. 2020 03; 36(3):834-841.
    View in: PubMed
    Score: 0.172
  36. Arthroscopic Suprapectoral and Open Subpectoral Biceps Tenodeses Produce Similar Outcomes: A Randomized Prospective Analysis. Arthroscopy. 2020 01; 36(1):23-32.
    View in: PubMed
    Score: 0.172
  37. How Should We Define Clinically Significant Improvement on Patient-Reported Outcomes Measurement Information System Test for Patients Undergoing Knee Meniscal Surgery? Arthroscopy. 2020 01; 36(1):241-250.
    View in: PubMed
    Score: 0.172
  38. Preoperative Mental Health Scores and Achieving Patient Acceptable Symptom State Are Predictive of Return to Work After Arthroscopic Rotator Cuff Repair. Orthop J Sports Med. 2019 Oct; 7(10):2325967119878415.
    View in: PubMed
    Score: 0.170
  39. The Impact of Workers' Compensation on Patient-Reported Outcomes Measurement Information System Upper Extremity and Legacy Outcome Measures in Patients Undergoing Arthroscopic Rotator Cuff Repair. Arthroscopy. 2019 10; 35(10):2817-2824.
    View in: PubMed
    Score: 0.169
  40. Primary Medial Patellofemoral Ligament Repair Versus Reconstruction: Rates and Risk Factors for Instability Recurrence in a Young, Active Patient Population. Arthroscopy. 2019 10; 35(10):2909-2915.
    View in: PubMed
    Score: 0.169
  41. Should We Question the External Validity of Database Studies? A Comparative Analysis of?Demographics. Arthroscopy. 2019 09; 35(9):2686-2694.
    View in: PubMed
    Score: 0.168
  42. Analysis of Return to Sport and Weight Training After Repair of the Pectoralis Major Tendon. Am J Sports Med. 2019 07; 47(9):2151-2157.
    View in: PubMed
    Score: 0.166
  43. Operative Time as an Independent and Modifiable Risk Factor for Short-Term Complications After Knee Arthroscopy. Arthroscopy. 2019 07; 35(7):2089-2098.
    View in: PubMed
    Score: 0.165
  44. Epidemiological Analysis of Changes in Clinical Practice for Full-Thickness Rotator Cuff Tears From 2010 to 2015. Orthop J Sports Med. 2019 May; 7(5):2325967119845912.
    View in: PubMed
    Score: 0.165
  45. Predictive Factors and Duration to Return to Sport After Isolated Meniscectomy. Orthop J Sports Med. 2019 Apr; 7(4):2325967119837940.
    View in: PubMed
    Score: 0.164
  46. Factors Associated With Clinically Significant Patient-Reported Outcomes After Primary Arthroscopic Partial Meniscectomy. Arthroscopy. 2019 05; 35(5):1567-1575.e3.
    View in: PubMed
    Score: 0.163
  47. Concomitant Medial Patellofemoral Ligament Reconstruction and Tibial Tubercle Osteotomy Do Not Increase the Incidence of 30-Day Complications: An Analysis of the NSQIP Database. Orthop J Sports Med. 2019 Apr; 7(4):2325967119837639.
    View in: PubMed
    Score: 0.163
  48. A biomechanical comparison of two arthroscopic suture techniques in biceps tenodesis: whip-stitch vs. simple suture techniques. J Shoulder Elbow Surg. 2019 Aug; 28(8):1531-1536.
    View in: PubMed
    Score: 0.163
  49. Trends in the Management of Isolated SLAP Tears in the United States. Orthop J Sports Med. 2019 Mar; 7(3):2325967119833997.
    View in: PubMed
    Score: 0.163
  50. Predictive Factors and the Duration to Pre-Injury Work Status Following Biceps Tenodesis. Arthroscopy. 2019 04; 35(4):1026-1033.
    View in: PubMed
    Score: 0.162
  51. Effect of Operative Time on Short-Term Adverse Events After Isolated Anterior Cruciate Ligament Reconstruction. Orthop J Sports Med. 2019 Feb; 7(2):2325967118825453.
    View in: PubMed
    Score: 0.162
  52. Establishing minimal clinically important difference, substantial clinical benefit, and patient acceptable symptomatic state after biceps tenodesis. J Shoulder Elbow Surg. 2019 Apr; 28(4):639-647.
    View in: PubMed
    Score: 0.161
  53. Oral Contraceptive Pills Are Not a Risk Factor for Deep Vein Thrombosis or Pulmonary Embolism After Arthroscopic Shoulder Surgery. Orthop J Sports Med. 2019 Jan; 7(1):2325967118822970.
    View in: PubMed
    Score: 0.161
  54. Establishing clinically significant outcome after arthroscopic rotator cuff repair. J Shoulder Elbow Surg. 2019 May; 28(5):939-948.
    View in: PubMed
    Score: 0.161
  55. Timeline for Maximal Subjective Outcome Improvement After Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2019 08; 47(10):2501-2509.
    View in: PubMed
    Score: 0.159
  56. Proximal fixation anterior to the lateral femoral epicondyle optimizes isometry in anterolateral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019 Mar; 27(3):875-884.
    View in: PubMed
    Score: 0.157
  57. Dynamic 3-Dimensional Mapping of Isometric Anterior Cruciate Ligament Attachment Sites on the Tibia and Femur: Is Anatomic Also Isometric? Arthroscopy. 2018 08; 34(8):2466-2475.
    View in: PubMed
    Score: 0.156
  58. The lack of standardized outcome measures following lower extremity injury in elite soccer: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2018 Oct; 26(10):3109-3117.
    View in: PubMed
    Score: 0.155
  59. Establishing maximal medical improvement after anatomic total shoulder arthroplasty. J Shoulder Elbow Surg. 2018 Sep; 27(9):1711-1720.
    View in: PubMed
    Score: 0.153
  60. Safety and patient satisfaction of outpatient shoulder arthroplasty. JSES Open Access. 2018 Mar; 2(1):13-17.
    View in: PubMed
    Score: 0.151
  61. Subpectoral Biceps Tenodesis With PEEK Interference Screw: A Biomechanical Analysis of Humeral Fracture Risk. Arthroscopy. 2018 03; 34(3):806-813.
    View in: PubMed
    Score: 0.149
  62. Establishing Maximal Medical Improvement After Arthroscopic Rotator Cuff Repair. Am J Sports Med. 2018 Mar; 46(4):1000-1007.
    View in: PubMed
    Score: 0.144
  63. Dial Test: Unrecognized Predictor of Anterior Cruciate Ligament Deficiency. Arthroscopy. 2017 Jul; 33(7):1375-1381.
    View in: PubMed
    Score: 0.142
  64. Optimization of Anteromedial Portal Femoral Tunnel Drilling With Flexible and Straight Reamers in Anterior Cruciate Ligament Reconstruction: A?Cadaveric 3-Dimensional Computed Tomography?Analysis. Arthroscopy. 2017 May; 33(5):1036-1043.
    View in: PubMed
    Score: 0.140
  65. Arthroscopic Repair of Isolated Subscapularis Tears: A Systematic Review of Technique-Specific Outcomes. Arthroscopy. 2017 Apr; 33(4):849-860.
    View in: PubMed
    Score: 0.140
  66. Biomechanical Evaluation of Posterior Cruciate Ligament Reconstruction With Quadriceps Versus Achilles Tendon Bone Block Allograft. Orthop J Sports Med. 2016 Aug; 4(8):2325967116660068.
    View in: PubMed
    Score: 0.136
  67. Postoperative restoration of upper extremity motion and neuromuscular control during the overhand pitch: evaluation of tenodesis and repair for superior labral anterior-posterior tears. Am J Sports Med. 2014 Dec; 42(12):2825-36.
    View in: PubMed
    Score: 0.120
  68. Identification and treatment of existing copathology in anterior shoulder instability repair. Arthroscopy. 2015 Jan; 31(1):154-66.
    View in: PubMed
    Score: 0.119
  69. PROMIS physical function and pain perform poorly psychometrically in patients undergoing medial patellofemoral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2023 Nov; 31(11):5067-5076.
    View in: PubMed
    Score: 0.056
  70. Patient Demographic Factors Are Not Associated With Mesenchymal Stromal Cell Concentration in Bone Marrow Aspirate Concentrate. Arthrosc Sports Med Rehabil. 2023 Jun; 5(3):e559-e567.
    View in: PubMed
    Score: 0.054
  71. Suture Anchor-Based Quadriceps Tendon Repair May Result in Improved Patient-Reported Outcomes but Similar Failure Rates Compared to the Transosseous Tunnel Technique. Arthroscopy. 2023 06; 39(6):1483-1489.e1.
    View in: PubMed
    Score: 0.053
  72. Patient-reported outcomes measurement information system depression psychometrically underperforms compared to legacy measures and is poorly associated with postoperative functional outcomes in shoulder arthroplasty patients. Shoulder Elbow. 2023 Dec; 15(6):626-633.
    View in: PubMed
    Score: 0.052
  73. Patients Follow 3 Different Rate-of-Recovery Patterns After Anterior Cruciate Ligament Reconstruction Based on International Knee Documentation Committee Score. Arthroscopy. 2022 08; 38(8):2480-2490.e3.
    View in: PubMed
    Score: 0.050
  74. Establishing Clinically Significant Outcomes After Anterior Cruciate Ligament Reconstruction in Pediatric Patients. J Pediatr Orthop. 2022 Jul 01; 42(6):e641-e648.
    View in: PubMed
    Score: 0.050
  75. The Minimal Clinically Important Difference, Substantial Clinical Benefit, and Patient-Acceptable Symptomatic State after Medial Patellofemoral Ligament Reconstruction. Arthrosc Sports Med Rehabil. 2022 Apr; 4(2):e661-e678.
    View in: PubMed
    Score: 0.050
  76. Scapular and humeral elevation coordination patterns used before vs. after Reverse Total Shoulder Arthroplasty. J Biomech. 2021 08 26; 125:110550.
    View in: PubMed
    Score: 0.047
  77. Establishing the Minimal Clinically Important Difference and Patient-Acceptable Symptomatic State After Arthroscopic Meniscal Repair and Associated Variables for Achievement. Arthroscopy. 2021 12; 37(12):3479-3486.
    View in: PubMed
    Score: 0.047
  78. Establishing clinically significant outcomes of the Patient-Reported Outcomes Measurement Information System Upper Extremity questionnaire after primary reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2021 Oct; 30(10):2231-2239.
    View in: PubMed
    Score: 0.047
  79. Patients undergoing anatomic total shoulder arthroplasty achieve clinically significant outcomes faster than those undergoing reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2021 Nov; 30(11):2523-2532.
    View in: PubMed
    Score: 0.047
  80. Establishing the Minimal Clinically Important Difference, Patient Acceptable Symptomatic State, and Substantial Clinical Benefit of the PROMIS Upper Extremity Questionnaire After Rotator Cuff Repair. Am J Sports Med. 2020 12; 48(14):3439-3446.
    View in: PubMed
    Score: 0.045
  81. Outcomes of the Latarjet procedure with minimum 5- and 10-year follow-up: A systematic review. Shoulder Elbow. 2020 Oct; 12(5):315-329.
    View in: PubMed
    Score: 0.045
  82. Patient-specificity of scapular orientation measurements using an acromion marker cluster with multiple calibration poses. J Biomech. 2020 07 17; 108:109889.
    View in: PubMed
    Score: 0.044
  83. Patient-Reported Outcomes Measurement Information System (PROMIS) Instruments Correlate Better With Legacy Measures in Knee Cartilage Patients at Postoperative Than at Preoperative Assessment. Arthroscopy. 2020 05; 36(5):1419-1428.
    View in: PubMed
    Score: 0.043
  84. A 15-Minute Incremental Increase in Operative Duration Is Associated With an Additional Risk of Complications Within 30 Days After Arthroscopic Rotator Cuff Repair. Orthop J Sports Med. 2019 Jul; 7(7):2325967119860752.
    View in: PubMed
    Score: 0.042
  85. Reverse shoulder arthroplasty for proximal humerus fracture: a more complex episode of care than for cuff tear arthropathy. J Shoulder Elbow Surg. 2019 Nov; 28(11):2139-2146.
    View in: PubMed
    Score: 0.042
  86. Arthroscopically Repaired Bucket-Handle Meniscus Tears: Patient Demographics, Postoperative Outcomes, and a Comparison of Success and Failure Cases. Cartilage. 2020 01; 11(1):77-87.
    View in: PubMed
    Score: 0.039
  87. The Influence of Bone Loss on Glenoid Version Measurement: A Computer-Modeled Cadaveric Analysis. Arthroscopy. 2018 08; 34(8):2319-2323.
    View in: PubMed
    Score: 0.039
  88. Tranexamic acid reduces blood loss after primary shoulder arthroplasty: a double-blind, placebo-controlled, prospective, randomized controlled trial. JSES Open Access. 2018 Mar; 2(1):23-27.
    View in: PubMed
    Score: 0.038
  89. Lateral Augmentation Procedures in Anterior Cruciate Ligament Reconstruction: Anatomic, Biomechanical, Imaging, and Clinical Evidence. Am J Sports Med. 2019 03; 47(3):740-752.
    View in: PubMed
    Score: 0.038
  90. Return to sport after ACL reconstruction. Orthopedics. 2014 Feb; 37(2):e103-8.
    View in: PubMed
    Score: 0.028
  91. Topographic analysis of the glenoid and proximal medial tibial articular surfaces: a search for the ideal match for glenoid resurfacing. Am J Sports Med. 2013 Aug; 41(8):1893-9.
    View in: PubMed
    Score: 0.027
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.