Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Nikhil Verma and Adam Yanke.
Connection Strength

9.092
  1. Biomechanical Analysis of Anteroinferior Bankart Repair Anchor Types. Am J Sports Med. 2023 08; 51(10):2642-2649.
    View in: PubMed
    Score: 0.906
  2. Topographic Analysis of the Distal Femoral Condyle Articular Cartilage Surface: Adequacy of the Graft from Opposite Condyles of the Same or Different Size for the Osteochondral Allograft Transplantation. Cartilage. 2019 04; 10(2):205-213.
    View in: PubMed
    Score: 0.622
  3. Three-Dimensional Magnetic Resonance Imaging Quantification of Glenoid Bone Loss Is Equivalent to 3-Dimensional Computed Tomography Quantification: Cadaveric Study. Arthroscopy. 2017 Apr; 33(4):709-715.
    View in: PubMed
    Score: 0.576
  4. PROMIS physical function and pain perform poorly psychometrically in patients undergoing medial patellofemoral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2023 Nov; 31(11):5067-5076.
    View in: PubMed
    Score: 0.231
  5. A Radiostereometric Analysis of Tendon Migration After Arthroscopic and Mini-Open Biceps Tenodesis: Interference Screw Versus Single Suture Anchor Fixation. Am J Sports Med. 2023 09; 51(11):2869-2880.
    View in: PubMed
    Score: 0.229
  6. Determining the Time Required to Achieve Clinically Significant Outcomes on the PROMIS Upper Extremity Questionnaire After Arthroscopic Rotator Cuff Repair. Orthop J Sports Med. 2023 Apr; 11(4):23259671231157038.
    View in: PubMed
    Score: 0.223
  7. Prospective Randomized Trial of Biologic Augmentation With Bone Marrow Aspirate Concentrate in Patients Undergoing Arthroscopic Rotator Cuff Repair. Am J Sports Med. 2023 04; 51(5):1234-1242.
    View in: PubMed
    Score: 0.221
  8. Suture Anchor-Based Quadriceps Tendon Repair May Result in Improved Patient-Reported Outcomes but Similar Failure Rates Compared to the Transosseous Tunnel Technique. Arthroscopy. 2023 06; 39(6):1483-1489.e1.
    View in: PubMed
    Score: 0.218
  9. Patient-reported outcomes measurement information system depression psychometrically underperforms compared to legacy measures and is poorly associated with postoperative functional outcomes in shoulder arthroplasty patients. Shoulder Elbow. 2023 Dec; 15(6):626-633.
    View in: PubMed
    Score: 0.217
  10. No Difference in Clinical Outcomes for Arthroscopic Suprapectoral Versus Open Subpectoral Biceps Tenodesis at Midterm Follow-up: A Randomized Prospective Analysis. Am J Sports Med. 2022 05; 50(6):1486-1494.
    View in: PubMed
    Score: 0.209
  11. Does native glenoid anatomy predispose to shoulder instability? An MRI analysis. J Shoulder Elbow Surg. 2022 Jun; 31(6S):S110-S116.
    View in: PubMed
    Score: 0.208
  12. The Minimal Clinically Important Difference, Substantial Clinical Benefit, and Patient-Acceptable Symptomatic State after Medial Patellofemoral Ligament Reconstruction. Arthrosc Sports Med Rehabil. 2022 Apr; 4(2):e661-e678.
    View in: PubMed
    Score: 0.206
  13. Bone Marrow Aspirate Concentrate Augmentation May Accelerate Allograft Ligamentization in Anterior Cruciate Ligament Reconstruction: A Double-Blinded Randomized Controlled Trial. Arthroscopy. 2022 07; 38(7):2255-2264.
    View in: PubMed
    Score: 0.205
  14. Two-Year Clinical Outcomes and Survivorship After Isolated Biceps Tenodesis. Arthroscopy. 2022 06; 38(6):1834-1842.
    View in: PubMed
    Score: 0.204
  15. Delaying ACL reconstruction beyond 6?months from injury impacts likelihood for clinically significant outcome improvement. Knee. 2021 Dec; 33:290-297.
    View in: PubMed
    Score: 0.202
  16. Inconsistencies in Controlling for Risk Factors for Recurrent Shoulder Instability After Primary Arthroscopic Bankart Repair: A Systematic Review. Am J Sports Med. 2022 11; 50(13):3705-3713.
    View in: PubMed
    Score: 0.201
  17. The Minimally Clinically Important Difference and Substantial Clinical Benefit in Anterior Cruciate Ligament Reconstruction: A Time-to-Achievement Analysis. Orthopedics. 2021 Sep-Oct; 44(5):299-305.
    View in: PubMed
    Score: 0.200
  18. Complication rates and outcomes after outpatient shoulder arthroplasty: a systematic review. JSES Int. 2021 May; 5(3):413-423.
    View in: PubMed
    Score: 0.191
  19. Time to Achievement of Clinically Significant Outcomes After Isolated Arthroscopic Partial Meniscectomy: A Multivariate Analysis. Arthrosc Sports Med Rehabil. 2020 Dec; 2(6):e723-e733.
    View in: PubMed
    Score: 0.190
  20. The Patient Acceptable Symptomatic State in Primary Anterior Cruciate Ligament Reconstruction: Predictors of Achievement. Arthroscopy. 2021 02; 37(2):600-605.
    View in: PubMed
    Score: 0.187
  21. How Is Maximum Outcome Improvement Defined in Patients Undergoing Shoulder Arthroscopy for Rotator Cuff Repair? A 1-Year Follow-Up Study. Arthroscopy. 2020 07; 36(7):1805-1810.
    View in: PubMed
    Score: 0.181
  22. Partial Meniscectomy for Degenerative Medial Meniscal Root Tears Shows Favorable Outcomes in Well-Aligned, Nonarthritic Knees: Letter to the Editor. Am J Sports Med. 2019 Aug; 47(10):NP53-NP54.
    View in: PubMed
    Score: 0.173
  23. Surgeon Ability to Appropriately Address the Calcified Cartilage Layer: An In Vitro Study of Arthroscopic and Open Techniques. Am J Sports Med. 2019 09; 47(11):2584-2588.
    View in: PubMed
    Score: 0.173
  24. A Flat Anterior Glenoid Corresponds to Subcritical Glenoid Bone Loss. Arthroscopy. 2019 06; 35(6):1788-1793.
    View in: PubMed
    Score: 0.170
  25. Automated 3-Dimensional Magnetic Resonance Imaging Allows for Accurate Evaluation of Glenoid Bone Loss Compared With 3-Dimensional Computed Tomography. Arthroscopy. 2019 03; 35(3):734-740.
    View in: PubMed
    Score: 0.167
  26. Topographic Matching of Osteochondral Allograft Transplantation Using Lateral Femoral Condyle for the Treatment of Medial Femoral Condyle Lesions: A?Computer-Simulated Model Study. Arthroscopy. 2018 11; 34(11):3033-3042.
    View in: PubMed
    Score: 0.164
  27. The Influence of Bone Loss on Glenoid Version Measurement: A Computer-Modeled Cadaveric Analysis. Arthroscopy. 2018 08; 34(8):2319-2323.
    View in: PubMed
    Score: 0.160
  28. Assessment and Evaluation of Glenoid Bone Loss. Arthrosc Tech. 2016 Aug; 5(4):e947-e951.
    View in: PubMed
    Score: 0.141
  29. Clinical outcomes following revision anterior shoulder arthroscopic capsulolabral stabilization. Arch Orthop Trauma Surg. 2015 Nov; 135(11):1553-9.
    View in: PubMed
    Score: 0.131
  30. Topographic analysis of the capitellum and distal femoral condyle: finding the best match for treating osteochondral defects of the humeral capitellum. Arthroscopy. 2015 May; 31(5):843-9.
    View in: PubMed
    Score: 0.127
  31. Disorders of the long head of the biceps tendon. Instr Course Lect. 2015; 64:567-76.
    View in: PubMed
    Score: 0.126
  32. All-arthroscopic patch augmentation of a massive rotator cuff tear: surgical technique. Arthrosc Tech. 2013; 2(4):e447-51.
    View in: PubMed
    Score: 0.116
  33. Arthroscopic suprascapular nerve decompression: transarticular and subacromial approach. Arthrosc Tech. 2012 Dec; 1(2):e187-92.
    View in: PubMed
    Score: 0.108
  34. Single-stage autologous cartilage repair results in positive patient-reported outcomes for chondral lesions of the knee: a systematic review. J ISAKOS. 2023 10; 8(5):372-380.
    View in: PubMed
    Score: 0.056
  35. Patient Demographic Factors Are Not Associated With Mesenchymal Stromal Cell Concentration in Bone Marrow Aspirate Concentrate. Arthrosc Sports Med Rehabil. 2023 Jun; 5(3):e559-e567.
    View in: PubMed
    Score: 0.056
  36. Complication Rates After Medial Patellofemoral Ligament Reconstruction Range From 0% to 32% With 0% to 11% Recurrent Instability: A Systematic Review. Arthroscopy. 2023 05; 39(5):1345-1356.
    View in: PubMed
    Score: 0.055
  37. YouTube videos provide low-quality educational content about rotator cuff disease. Clin Shoulder Elb. 2022 Sep; 25(3):217-223.
    View in: PubMed
    Score: 0.053
  38. Safety and Efficacy of Postoperative Nonsteroidal Anti-inflammatory Drugs in Sports Medicine. J Am Acad Orthop Surg. 2022 Jun 15; 30(12):535-542.
    View in: PubMed
    Score: 0.053
  39. Patients Follow 3 Different Rate-of-Recovery Patterns After Anterior Cruciate Ligament Reconstruction Based on International Knee Documentation Committee Score. Arthroscopy. 2022 08; 38(8):2480-2490.e3.
    View in: PubMed
    Score: 0.052
  40. Establishing Clinically Significant Outcomes After Anterior Cruciate Ligament Reconstruction in Pediatric Patients. J Pediatr Orthop. 2022 Jul 01; 42(6):e641-e648.
    View in: PubMed
    Score: 0.052
  41. Travel Distance Does Not Affect Outcomes After Arthroscopic Rotator Cuff Repair. Arthrosc Sports Med Rehabil. 2022 Apr; 4(2):e511-e517.
    View in: PubMed
    Score: 0.051
  42. PROMIS Upper Extremity underperforms psychometrically relative to American Shoulder and Elbow Surgeons score in patients undergoing primary rotator cuff repair. J Shoulder Elbow Surg. 2022 Apr; 31(4):718-725.
    View in: PubMed
    Score: 0.051
  43. Relative Efficacy of Intra-articular Injections in the Treatment of Knee Osteoarthritis: A Systematic Review and Network Meta-analysis. Am J Sports Med. 2022 09; 50(11):3140-3148.
    View in: PubMed
    Score: 0.050
  44. Establishing the Minimal Clinically Important Difference and Patient-Acceptable Symptomatic State After Arthroscopic Meniscal Repair and Associated Variables for Achievement. Arthroscopy. 2021 12; 37(12):3479-3486.
    View in: PubMed
    Score: 0.049
  45. Predicting Patient Satisfaction With Maximal Outcome Improvement After Biceps Tenodesis. Orthopedics. 2021 May-Jun; 44(3):e359-e366.
    View in: PubMed
    Score: 0.049
  46. Microdrilling Demonstrates Superior Patient-Reported Outcomes and Lower Revision Rates Than Traditional Microfracture: A Matched Cohort Analysis. Arthrosc Sports Med Rehabil. 2021 Jun; 3(3):e629-e638.
    View in: PubMed
    Score: 0.049
  47. Establishing Clinically Significant Outcomes for Patient-Reported Outcomes Measurement Information System After Biceps Tenodesis. Arthroscopy. 2021 06; 37(6):1731-1739.
    View in: PubMed
    Score: 0.048
  48. Machine-learning model successfully predicts patients at risk for prolonged postoperative opioid use following elective knee arthroscopy. Knee Surg Sports Traumatol Arthrosc. 2022 Mar; 30(3):762-772.
    View in: PubMed
    Score: 0.048
  49. Establishing the Minimal Clinically Important Difference, Patient Acceptable Symptomatic State, and Substantial Clinical Benefit of the PROMIS Upper Extremity Questionnaire After Rotator Cuff Repair. Am J Sports Med. 2020 12; 48(14):3439-3446.
    View in: PubMed
    Score: 0.047
  50. Preoperative Opioid Use Predicts Prolonged Postoperative Opioid Use and Inferior Patient Outcomes Following Anterior Cruciate Ligament Reconstruction. Arthroscopy. 2020 10; 36(10):2681-2688.e1.
    View in: PubMed
    Score: 0.046
  51. Perioperative Opioid Use Predicts Postoperative Opioid Use and Inferior Outcomes After Shoulder Arthroscopy. Arthroscopy. 2020 10; 36(10):2645-2654.
    View in: PubMed
    Score: 0.046
  52. Regenerative Potential of Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis and Chondral Defects: A Systematic Review and Meta-analysis. Arthroscopy. 2021 01; 37(1):362-378.
    View in: PubMed
    Score: 0.046
  53. Author Reply to "Regarding "Primary Medial Patellofemoral Ligament Repair Versus Reconstruction: Rates and Risk Factors for Instability Recurrence in a Young, Active Patient Population". Arthroscopy. 2020 06; 36(6):1496-1499.
    View in: PubMed
    Score: 0.046
  54. Patient-Reported Outcomes Measurement Information System (PROMIS) Instruments Correlate Better With Legacy Measures in Knee Cartilage Patients at Postoperative Than at Preoperative Assessment. Arthroscopy. 2020 05; 36(5):1419-1428.
    View in: PubMed
    Score: 0.045
  55. Arthroscopic Suprapectoral and Open Subpectoral Biceps Tenodeses Produce Similar Outcomes: A Randomized Prospective Analysis. Arthroscopy. 2020 01; 36(1):23-32.
    View in: PubMed
    Score: 0.045
  56. Primary Medial Patellofemoral Ligament Repair Versus Reconstruction: Rates and Risk Factors for Instability Recurrence in a Young, Active Patient Population. Arthroscopy. 2019 10; 35(10):2909-2915.
    View in: PubMed
    Score: 0.044
  57. Concomitant Medial Patellofemoral Ligament Reconstruction and Tibial Tubercle Osteotomy Do Not Increase the Incidence of 30-Day Complications: An Analysis of the NSQIP Database. Orthop J Sports Med. 2019 Apr; 7(4):2325967119837639.
    View in: PubMed
    Score: 0.042
  58. Management of Chondral Lesions of the Knee: Analysis of Trends and Short-Term Complications Using the National Surgical Quality Improvement Program Database. Arthroscopy. 2019 01; 35(1):138-146.
    View in: PubMed
    Score: 0.041
  59. Variability in the Contour of Cadaveric Anterior and Posterior Glenoids Based on Ipsilateral 3-Dimensional Computed Tomography Reconstructions: Implications for Clinical Estimation of Bone Loss. Arthroscopy. 2018 09; 34(9):2560-2566.
    View in: PubMed
    Score: 0.040
  60. Arthroscopically Repaired Bucket-Handle Meniscus Tears: Patient Demographics, Postoperative Outcomes, and a Comparison of Success and Failure Cases. Cartilage. 2020 01; 11(1):77-87.
    View in: PubMed
    Score: 0.040
  61. Immediate versus delayed meniscus allograft transplantation: letter to the editor. Am J Sports Med. 2015 May; 43(5):NP8-9.
    View in: PubMed
    Score: 0.032
  62. Feasibility of an osteochondral allograft for biologic glenoid resurfacing. J Shoulder Elbow Surg. 2014 Apr; 23(4):477-84.
    View in: PubMed
    Score: 0.029
  63. Open repair of retracted latissimus dorsi tendon avulsion. Am J Orthop (Belle Mead NJ). 2013 Jun; 42(6):280-5.
    View in: PubMed
    Score: 0.028
  64. Open repair of an acute latissimus tendon avulsion in a Major League Baseball pitcher. J Shoulder Elbow Surg. 2013 Jul; 22(7):e19-23.
    View in: PubMed
    Score: 0.028
  65. Graft tensioning during knee ligament reconstruction: principles and practice. J Am Acad Orthop Surg. 2012 Oct; 20(10):633-45.
    View in: PubMed
    Score: 0.027
  66. Medial versus lateral supraspinatus tendon properties: implications for double-row rotator cuff repair. Am J Sports Med. 2010 Dec; 38(12):2456-63.
    View in: PubMed
    Score: 0.023
  67. Meniscal allograft size can be predicted by height, weight, and gender. Arthroscopy. 2009 Jul; 25(7):722-7.
    View in: PubMed
    Score: 0.022
  68. Arthroscopic treatment of multidirectional shoulder instability with minimum 270 degrees labral repair: minimum 2-year follow-up. Arthroscopy. 2008 Jun; 24(6):704-11.
    View in: PubMed
    Score: 0.020
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.